1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
statuscvo [17]
3 years ago
13

I need help!!! 60 POINTS!!!!

Physics
2 answers:
galina1969 [7]3 years ago
8 0

The answer is "A and B are different elements, while C is an isotope of B".

Scrat [10]3 years ago
3 0
Correct one is b
Good luck
You might be interested in
A gas occupies a volume of 20 cubic meters at 9,000 pascals. If the pressure is lowered to 5,000 pascals, what volume will the g
forsale [732]
We need to consider no change in the temperature of gas (isothermal transformation)

Volume and pressure are inversely proportional magnitudes, so we can write:

P_1.V_1=P_2.V_2\\
\\
9.20=5.V_2\\
\\
V_2=\frac{180}{5}=36 \ m^3
5 0
2 years ago
An electron and a proton each have a thermal kinetic energy of 3kBT/2. Calculate the de Broglie wavelength of each particle at a
S_A_V [24]

Answer:

Given:

Thermal Kinetic Energy of an electron, KE_{t} = \frac{3}{2}k_{b}T

k_{b} = 1.38\times 10^{- 23} J/k = Boltzmann's constant

Temperature, T = 1800 K

Solution:

Now, to calculate the de-Broglie wavelength of the electron, \lambda_{e}:

\lambda_{e} = \frac{h}{p_{e}}

\lambda_{e} = \frac{h}{m_{e}{v_{e}}              (1)

where

h = Planck's constant = 6.626\times 10^{- 34}m^{2}kg/s

p_{e} = momentum of an electron

v_{e} = velocity of an electron

m_{e} = 9.1\times 10_{- 31} kg = mass of electon

Now,

Kinetic energy of an electron = thermal kinetic energy

\frac{1}{2}m_{e}v_{e}^{2} = \frac{3}{2}k_{b}T

}v_{e} = \sqrt{2\frac{\frac{3}{2}k_{b}T}{m_{e}}}

}v_{e} = \sqrt{\frac{3\times 1.38\times 10^{- 23}\times 1800}{9.1\times 10_{- 31}}}

v_{e} = 2.86\times 10^{5} m/s                    (2)

Using eqn (2) in (1):

\lambda_{e} = \frac{6.626\times 10^{- 34}}{9.1\times 10_{- 31}\times 2.86\times 10^{5}} = 2.55 nm

Now, to calculate the de-Broglie wavelength of proton, \lambda_{e}:

\lambda_{p} = \frac{h}{p_{p}}

\lambda_{p} = \frac{h}{m_{p}{v_{p}}                             (3)

where

m_{p} = 1.6726\times 10_{- 27} kg = mass of proton

v_{p} = velocity of an proton

Now,

Kinetic energy of a proton = thermal kinetic energy

\frac{1}{2}m_{p}v_{p}^{2} = \frac{3}{2}k_{b}T

}v_{p} = \sqrt{2\frac{\frac{3}{2}k_{b}T}{m_{p}}}

}v_{p} = \sqrt{\frac{3\times 1.38\times 10^{- 23}\times 1800}{1.6726\times 10_{- 27}}}

v_{p} = 6.674\times 10^{3} m/s                               (4)                    

Using eqn (4) in (3):

\lambda_{p} = \frac{6.626\times 10^{- 34}}{1.6726\times 10_{- 27}\times 6.674\times 10^{3}} = 5.94\times 10^{- 11} m = 0.0594 nm

7 0
3 years ago
If the kinetic energy of an electron is 4.1e-18 j, what is the speed of the electron? (you can use the approximate (nonrelativis
arlik [135]
The kinetic energy of the electron is
K= \frac{1}{2}mv^2
where m=9.1 \cdot 10^{-31} kg is the mass of the electron and v its speed. Since we know the value of the kinetic energy, K=4.1 \cdot 10^{-18} J, we can find the value of the speed v:
v= \sqrt{ \frac{2K}{m} }= \sqrt{ \frac{2\cdot 4.1 \cdot 10^{-18}J}{9.1 \cdot 10^{-31}kg} }  = 3\cdot 10^6 m/s
3 0
3 years ago
The Red Sea is widening at a rate of 1.25 centimeters per year. How many years will it take to widen another 812.5 centimeters?
Pani-rosa [81]
E 812 Jak’s now fmfdkc
5 0
3 years ago
A torsional pendulum consists of a disk of mass 450 g and radius 3.5 cm, hanging from a wire. If the disk is given an initial an
Montano1993 [528]

To solve this problem we will use the kinematic equations of angular motion, starting from the definition of angular velocity in terms of frequency, to verify the angular displacement and its respective derivative, let's start:

\omega = 2\pi f

\omega = 2\pi (2.5)

\omega = 5\pi rad/s

The angular displacement is given as the form:

\theta (t) = \theta_0 cos(\omega t)

In the equlibrium we have to t=0, \theta(t) = \theta_0 and in the given position we have to

\theta(t) = \theta_0 cos(5\pi t)

Derived the expression we will have the equivalent to angular velocity

\frac{d\theta}{dt} = 2.7rad/s

Replacing,

\theta_0(sin(5\pi t))5\pi = 2.7

Finally

\theta_0 = \frac{2.7}{5\pi}rad = 9.848\°

Therefore the maximum angular displacement is 9.848°

6 0
3 years ago
Other questions:
  • Two children playing on a frictionless garden gate invent a new game called "gate". The idea is that they will get on opposite s
    10·1 answer
  • The doctor writes a prescription for na heparin 20,000 units in 500 ml n.s. infuse over 8 hours. what is the flow rate in ml/hr?
    14·1 answer
  • Two horses begin at rest. After a few seconds, horse A is traveling with a velocity of 10 m/s west, while horse B is traveling w
    8·1 answer
  • Which statement describes why scientists notation is useful
    13·1 answer
  • Chameleons catch insects with their tongues, which they can rapidly extend to great lengths. In a typical strike, the chameleon'
    9·1 answer
  • With what tension must a rope with length 3.00 mm and mass 0.105 kgkg be stretched for transverse waves of frequency 40.0 HzHz t
    15·1 answer
  • Which describes how prevailing winds affect precipitation in a region?
    7·2 answers
  • In projectile mtion, what is the x-component of the initial velocity? if V= Vi = 100 m/s and the angle with horizontal axis Θ =
    12·2 answers
  • If a substance containing charged ions and electrons can be compressed so that the particles have less space between them, the s
    14·2 answers
  • Which method best helps to prevent wind erosion?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!