Answer: Real image
Explanation:
converging lens will only produce a real image if the object is located beyond the focal point (i.e., more than one focal length away).
<span>First, she should put the sample in a test tube and place it in a centrifuge. This would cause the red blood cells to move to the bottom because of their higher density. Next, she would be able to decant the plasma and analyze it separately from the red blood cells.</span>
Hello!
Let's begin by doing a summation of torques, placing the pivot point at the attachment point of the rod to the wall.

We have two torques acting on the rod:
- Force of gravity at the center of mass (d = 0.700 m)
- VERTICAL component of the tension at a distance of 'L' (L = 2.200 m)
Both of these act in opposite directions. Let's use the equation for torque:

Doing the summation using their respective lever arms:


Our unknown is 'theta' - the angle the string forms with the rod. Let's use right triangle trig to solve:

Now, let's solve for 'T'.

Plugging in the values:

Where is the Temperature bud?
Answer:
The percentage of its mechanical energy does the ball lose with each bounce is 23 %
Explanation:
Given data,
The tennis ball is released from the height, h = 4 m
After the third bounce it reaches height, h' = 183 cm
= 1.83 m
The total mechanical energy of the ball is equal to its maximum P.E
E = mgh
= 4 mg
At height h', the P.E becomes
E' = mgh'
= 1.83 mg
The percentage of change in energy the ball retains to its original energy,
ΔE % = 45 %
The ball retains only the 45% of its original energy after 3 bounces.
Therefore, the energy retains in each bounce is
∛ (0.45) = 0.77
The ball retains only the 77% of its original energy.
The energy lost to the floor is,
E = 100 - 77
= 23 %
Hence, the percentage of its mechanical energy does the ball lose with each bounce is 23 %