Answer:
5 x biger
Explanation:
becuze if it ia 5× more it nids 5×more force to be =
Answer:
Specific heat at constant pressure is = 1.005 kJ/kg.K
Specific heat at constant volume is = 0.718 kJ/kg.K
Explanation:
given data
temperature T1 = 50°C
temperature T2 = 80°C
solution
we know energy require to heat the air is express as
for constant pressure and volume
Q = m × c × ΔT ........................1
here m is mass of the gas and c is specific heat of the gas and Δ
T is change in temperature of the gas
here both Mass and temperature difference is equal and energy required is dependent on specific heat of air.
and here at constant pressure Specific heat is greater than the specific heat at constant volume,
so the amount of heat required to raise the temperature of one unit mass by one degree at constant pressure is
Specific heat at constant pressure is = 1.005 kJ/kg.K
and
Specific heat at constant volume is = 0.718 kJ/kg.K
There are two external force acts on the chair.
1. The force due to earth gravity, acts in the downward direction.
2. Reaction force of the gravity, which acts in the Upward direction (Normal Force).
On every object, there is a force acts due to gravity of earth, which pulls the object towards the centre of earth, known as gravity force, always acts in the downward direction. Mathematically it's given as
F=mg
here, m is the mass of the object, and g is the acceleration of gravity.
To balance this gravity force, a counter force acts in the opposite direction, whose magnitude is equal to the force of gravity
a. We can calculate the amount of work by calculating the area under the graph.
first area (rectangular): 2.5 x 6 = 15
second area(trapezoid): 1/2 x (6+10) x 2.5 =20
total work done: 35 J
b. the force was first applied = 6 N
F = m.a
a = 6 : 3 = 2 m/s²
vf²=vi²+2as
vf²=6²+2.2.5
vf²=56
vf=7.5 m/s