1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Eva8 [605]
3 years ago
13

He discovered that the orbits of planets are ellipses.

Physics
2 answers:
bezimeni [28]3 years ago
6 0

Answer:

Kepler

Explanation:

Kepler discovered that the orbits of planets are ellipses.

Alenkinab [10]3 years ago
6 0

<em>Johannes Kepler</em>, the Polish mathematician, discovered that the planetary orbits ARE most likely ellipses.

Isaac Newton, the English Physicist/mathematician, discovered that the planetary orbits HAVE TO BE ellipses.

You might be interested in
A spring gun is made by compressing a spring in a tube and then latching the spring at
inn [45]

Answer:

a)v=13.2171\,m.s^{-1}

b)H=8.9605\,m

Explanation:

Given:

mass of bullet, m=4.97\times 10^{-3}\,kg

compression of the spring, \Delta x=0.0476\,m

force required for the given compression, F=9.12 \,N

(a)

We know

F=m.a

where:

a= acceleration

9.12=4.97\times 10^{-3}\times a

a\approx 1835\,m.s^{-2}\\

we have:

initial velocity,u=0\,m.s^{-1}

Using the eq. of motion:

v^2=u^2+2a.\Delta x

where:

v= final velocity after the separation of spring with the bullet.

v^2= 0^2+2\times 1835\times 0.0476

v=13.2171\,m.s^{-1}

(b)

Now, in vertical direction we take the above velocity as the initial velocity "u"

so,

u=13.2171\,m.s^{-1}

∵At maximum height the final velocity will be zero

v=0\,m.s^{-1}

Using the equation of motion:

v^2=u^2-2g.h

where:

h= height

g= acceleration due to gravity

0^2=13.2171^2-2\times 9.8\times h

h=8.9129\,m

is the height from the release position of the spring.

So, the height from the latched position be:

H=h+\Delta x

H=8.9129+0.0476

H=8.9605\,m

4 0
3 years ago
The length of the mercury thread is found to be 4cm and 24cm at ice point and steam point respectively on an ungraduated thermom
BabaBlast [244]

Answer:

The difference between ice and steam in Celsius (Centigrade) is 100 deg.

So the difference between and 4 cm and 24 cm of the thread corresponds to 100 deg C.

So 8 cm is 4 cm greater than the ice point

4 cm / 20 cm = 1/5     since the steam point and the ice point are 20 cm apart

Then 1/5 * 100  deg C = 20 deg C   the requested temperature

6 0
3 years ago
The work function for tungsten metal is 4.52eV a. What is the cutoff (threshold) wavelength for tungsten? b. What is the maximum
Tanya [424]

Answer: a) 274.34 nm; b) 1.74 eV c) 1.74 V

Explanation: In order to solve this problem we have to consider the energy balance for the photoelectric effect on tungsten:

h*ν = Ek+W ; where h is the Planck constant, ek the kinetic energy of electrons and W the work funcion of the metal catode.

In order to calculate the cutoff wavelength we have to consider that Ek=0

in this case  h*ν=W

(h*c)/λ=4.52 eV

λ= (h*c)/4.52 eV

λ= (1240 eV*nm)/(4.52 eV)=274.34 nm

From this h*ν = Ek+W;  we can calculate the kinetic energy for a radiation wavelength of 198 nm

then we have

(h*c)/(λ)-W= Ek

Ek=(1240 eV*nm)/(198 nm)-4.52 eV=1.74 eV

Finally, if we want to stop these electrons we have to applied a stop potental equal to 1.74 V . At this potential the photo-current drop to zero. This potential is lower to the catode, so this  acts to slow down the ejected electrons from the catode.

5 0
2 years ago
If you can answer all of this then your a legend (I'm giving you all my points)
navik [9.2K]

Answer:

1. B

2. B

3. D

4. A

Hope this was correct! A lot of the answers are already in the article itself and the wording is just different. I suggest now that for information retainment, you read the article again with the correct points in mind and see if you can spot the points where the answers are stated!

3 0
2 years ago
When you changed from low to high power, how did the change affect the working distance of the lens?
Basile [38]

The working distance gets shorter as the magnification gets bigger. In order to focus, the high-power objective lens must be significantly nearer to the specimen than the low-power lens. Magnification is negatively correlated with working distance.

Magnification change The magnification of a specimen is increased by switching from low power to high power. The magnification of an image is determined by multiplying the magnification of the objective lens by the magnification of the ocular lens, or eyepiece.

The geometry of the optical system connects the magnifying power, or how much the thing being observed seems expanded, and the field of view, or the size of the object that can be seen.

To know more about  working distance

brainly.com/question/13551539

#SPJ4

4 0
1 year ago
Other questions:
  • Which location is MOST LIKELY to be struck by a hurricane? A) Charleston, South Carolina B) San Diego, California C) Buffalo, Ne
    13·1 answer
  • 150-N box is being pulled horizontally in a wagon accelerating uniformly at 3.00 m/s2. The box does not move relative to the wag
    13·1 answer
  • Sand is pouring out of a pipe and is forming a conical pile on the ground. The radius of the pile is increasing at a rate of 2 f
    7·1 answer
  • A beam of red light and a beam of blue light have exactly the same energy. Which beam contains the greater number of photons?
    7·1 answer
  • What’s the right one.
    9·1 answer
  • • How does wind shape Earth’s surface?
    14·1 answer
  • In getting ready to slam-dunk the ball, a basketball player starts from rest and sprints to a speed of 5.45 m/s in 3.02 s. Assum
    6·1 answer
  • Physical activity and exercise typically lead to
    7·2 answers
  • Which is an example of a mixture?
    14·1 answer
  • Which is the BEST example of the kind of mechanics that are studied in sports biometrics?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!