Answer:
a) Time = 2.67 s
b) Height = 35.0 m
Explanation:
a) The time of flight can be found using the following equation:
(1)
Where:
: is the final position in the horizontal direction = 80 m
: is the initial position in the horizontal direction = 0
: is the initial velocity in the horizontal direction = 30 m/s
a: is the acceleration in the horizontal direction = 0 (the stone is only accelerated by gravity)
t: is the time =?
By entering the above values into equation (1) and solving for "t", we can find the time of flight of the stone:

b) The height of the hill is given by:
Where:
: is the final position in the vertical direction = 0
: is the initial position in the vertical direction =?
: is the initial velocity in the vertical direction =0 (the stone is thrown horizontally)
g: is the acceleration due to gravity = 9.81 m/s²
Hence, the height of the hill is:
I hope it helps you!
<span>Assume: neglect of the collar dimensions.
Ď_h=(P*r)/t=(5*125)/8=78.125 MPa ,Ď_a=Ď_h/2=39 MPa
τ=(S*Q)/(I*b)=(40*〖10〗^3*π(〖0.125〗^2-〖0.117〗^2 )*121*〖10〗^(-3))/(π/2 (〖0.125〗^4-〖0.117〗^4 )*8*〖10〗^(-3) )=41.277 MPa
@ Point K:
Ď_z=(+M*c)/I=(40*0.6*121*〖10〗^(-3))/(8.914*〖10〗^(-5) )=32.6 MPa
Using Mohr Circle:
Ď_max=(Ď_h+Ď_a)/2+âš(Ď„^2+((Ď_h-Ď_a)/2)^2 )
Ď_max=104.2 MPa, Ď„_max=45.62 MPa</span>
The correct answer is C. more mass and less distance between two objects.
Magnetic domain structure is responsible for the magnetic behavior of ferromagnetic materials like iron, nickel, cobalt and their alloys, and ferrimagnetic materials like ferrite. ... Magnetic domains form in materials which have magnetic ordering; that is, their dipoles spontaneously align due to the exchange interaction.
Answer:
The balloon prohibits the flow of air through the air capacitor.
Explanation:
Just like an electric capacitor has an insulator between the plates, the air capacitor has a balloon between the chambers.