If a current of 1 ampere enters a parallel circuit at Point A. This 1 ampere of current will divide between Resistors R1 and R2 and then recombine at Point B
<h3>
Parallel circuit</h3>
A parallel circuit is a circuit with separate branches with a common endpoint. In a parallel circuit, the voltage across each branch is the same but the currents vary. The total current is the sum of the currents flowing through each component.
If a current of 1 ampere enters a parallel circuit at Point A. This 1 ampere of current will divide between Resistors R1 and R2 and then recombine at Point B.
Find out more on Parallel circuit at: brainly.com/question/80537
Answer: (a) t = 5.44 sec
(b) vf = 53.31 m/s
(c) s = 5.0m
Explanation: from the question, given data
the Height of the tower, h = 145m
from question
(a)
the initial velocity, v₁ = 0 m/s
s = v₁t + 1/2 gt²
-145 m = 0(t) + 1/2 (-9.8t²)
t² = 145/4.9
t² = 29.59
t = 5.44 sec
(b)
the speed of the sphere at the bottom of the tower is
vf² = vi² +2as
vf² = 0 + 2(-9.8 × -145)
vf² = 2842
vf = 53.31 m/s
(c)
when caught, the sphere experiences a deceleration of;
a = -29.0g
the time it would take to decelerate becomes;
vf = vi + at
0 = (53.31) + (-29 ×9.8)t
where t = 53.31 / 284.2
t = 0.1876 sec
∴ the distance travelled during the deceleration becomes;
vf² = vi² + 2as
s = (vf² - vi²) / 2a
s = (0 - 53.31²) / 2×-29×9.8
s = -2841.9561 / -568.4
s = 4.99 ≈ 5.0m
i hope this helps, cheers
It acts in the upward direction.
Explanation:
spectral lines or signatures of elements depend on temperature, the temperature of the sun is about 5800 K.
at this temperature most calcium atoms are excited to higher energy states than hydrogen atoms and this means that calcium atoms are gonna have more signatures than the atoms of hydrogen.
the statement that the sun shows weak hyrogen lines and strong calcium line is wrong because at the sun's temperature most of the hydrogen atoms are in lower energy states while calcium atoms are in higher energy states hence calcium has more or ''strong'' lines than hydrogen.
Answer:
Time, 
Explanation:
Given that,
When a high-energy proton or pion traveling near the speed of light collides with a nucleus, it may travel
before interacting.
Let t is the time interval required for the strong interaction to occur. It will move with the speed of light. So,

So, the time interval is 