1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna [14]
3 years ago
5

"If you double the wavelength of a wave on a particular string", what happens to the wave speed v and the frequency f ? (i) v do

ubles and f is unchanged; (ii) v is unchanged and f doubles; (iii) v becomes onehalf as great and f is unchanged; (iv) v is unchanged and f becomes one-half as great; (v) none of these. â
Physics
2 answers:
nadezda [96]3 years ago
5 0

Answer:

v doubles and f is unchanged

Explanation:

According to the formula v = f¶

Where v is the velocity of the wave

f is the frequency

¶ is the wavelength

Velocity is directly proportional to wavelength. Direct proportionality shows that increase in velocity will cause an increase in the wavelength and decrease in velocity will also cause a decrease in wavelength with the frequency not changing since the velocity and wavelength are both increasing and decreasing at the same rate.

According to the question, if the wavelength is doubled, the velocity (v) will also double while the frequency (f) remains unchanged.

blagie [28]3 years ago
5 0

Answer:

(i) v doubles and f is unchanged

Explanation:

The relationship between wave speed (v), frequency (f) and wavelength (λ) of a string wave is given by;

v = f x λ

As seen, the wave speed is directly proportional to the frequency provided the wavelength remains constant. Also, if frequency is left constant, the wave speed will be directly proportional to the wavelength. Also the frequency increases as wavelength decreases and vice-versa while the speed remains constant.

Therefore, when the wavelength is doubled, the wave speed will also be doubled while frequency remains unchanged.

You might be interested in
The coefficient of cubical expansion of a substance depends upon
zzz [600]
<span>I think that the coefficient of cubical expansion of a substance depends on THE CHANGE IN VOLUME.

Cubical expansion, also known as, volumetric expansion has the following formula:

</span>Δ V = β V₁ ΔT

V₁ = initial volume of the body
ΔT = change in temperature of the body
β = coefficient of volumetric expansion.

β is defined as the <span>increase in volume per unit original volume per Kelvin rise in temperature.
</span>
With the above definition, it is safe to assume that the <span>coefficient of cubical expansion of a substance depends on the change in volume, which also changes in response to the change in temperature. </span>
7 0
3 years ago
According to Newton's law of universal gravitation, which statement is true?
valkas [14]

Answer:

Newton's law of gravitation, statement that any particle of matter in the universe attracts any other with a force varying directly as the product of the masses and inversely as the square of the distance between them.

6 0
3 years ago
Read 2 more answers
A sample of helium has a volume of 12.7 m3. The temperature is raised to 323 K at which time the gas occupies 32.5 m3? Assume pr
jasenka [17]

Answer: The original temperature was

T_{1}=126.51K

Explanation:

Let's put the information in mathematical form:

V_{1}=12.7m^{3}

T_{1}=?

V_{2}=32.5m^{3}

T_{2}=323K

P_{1}=P_{2}=3atm

If we consider the helium as an ideal gas, we can use the Ideal Gas Law:

PV=nRT

were <em>R</em> is the gas constant. And <em>n</em> is the number of moles (which we don't know yet)

From this, taking R=0.08205746\frac{atm.l}{mol.K},  we have:

n=\frac{P_{2}V_{2}}{RT_{2}}

⇒n=3.67mol

Now:

T_{1}=\frac{P_{1}V_{1}}{nR}

⇒T_{1}=126.51K

7 0
2 years ago
Read 2 more answers
The electrons can be modeled as forming a uniform shell of negative charge. What net electric field do they produce at the locat
Nonamiya [84]

Answer:

E=0

Explanation:

The electric field at the centre of the shell is zero because total enclosed charge in the nucleus is zero

7 0
3 years ago
A proton is initially at rest. After some time, a uniform electric field is turned on and the proton accelerates. The magnitude
marusya05 [52]

Answer:

a) 8.83*10⁵ m/s  b) 2.80*10⁶ m/s

Explanation:

a) Assuming no other forces acting on the proton, the acceleration on it is produced by the electric field.

By definition, the  force due to the electric field is as follows:

F = q*E = e*E (1)

where e is the elementary charge, the charge carried by only one proton, and is e = 1.6*10⁻¹⁹ C.

According to Newton's 2nd law, this force is at the same time, the product of the mass of the proton, times the acceleration a:

F = mp*a (2)

From (1) and(2), being left sides equal, right sides must be equal too:

F = e*E = mp*a

Solving for a:

a = \frac{e*E}{mp} =\frac{1.6e-19C*1.36e5N/C}{1.67e-27kg} =1.3e13 m/s2

⇒ a = 1.3*10¹³ m/s²

As we have the value of a (which is constant due to the field is uniform), the displacement x, and we know that the initial velocity is 0, in order to get the value of the speed, we can use the following kinematic equation:

vf^{2} -vo^{2} = 2*a*x

Replacing by v₀ = 0, a= 1.3*10¹³ m/s² and  x = 0.03 m, we can find vf as follows:

vf =\sqrt{2*(1.3e13 m/s2)*0.03m} = 8.83e5 m/s

⇒ vf = 8.83*10⁵ m/s

b) We can just repeat the equation from above, replacing x=0.03 m by x=0.3 m, as follows:

vf =\sqrt{2*(1.3e13 m/s2)*0.3m} = 2.80e6 m/s

⇒ vf = 2.80*10⁶ m/s

4 0
3 years ago
Other questions:
  • What burns quicker, white or colored candles?
    7·1 answer
  • A rock weighing 20 n (mass = 2 kg) is swung in a horizontal circle of radius 2 m at a constant speed of 6 m/s. what is the centr
    13·2 answers
  • When a rubber band is pulled back on your finger but not yet let go how is that potential energy?
    6·1 answer
  • When developing an experimental design, which action could a scientist take to improve the quality of the results?
    14·1 answer
  • Two copper wires have the same length, but one has twice the diameter of the other. Compared to the one that has the smaller dia
    14·1 answer
  • 9. The three types of stress that act on Earth's rocks are compression, tension, and A. strain. B. shear. C. tephra. D. shale.
    13·2 answers
  • 7. A 3.0 kg object travels vertically at a constant
    9·1 answer
  • What is (a) the x component and (b) the y component of the net electric field at the square's center
    7·1 answer
  • Is the force of gravity that attracts my body to the Earth related to the force of gravity between the planets and the Sun
    8·1 answer
  • How does solar energy work
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!