1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
8_murik_8 [283]
3 years ago
13

In the united states a standard letter sized piece of paper is 8.5 inches wide by 11 inches long. The international standard for

a letter sized piece of paper is different. The international standard based on SI units:21.0cm wide by 29.7 cm long
Physics
1 answer:
Andre45 [30]3 years ago
5 0

This question is incomplete

Complete Question

In the United States, a standard letter-sized piece of paper is 8.5 inches wide by 11 inches long. The international standard for a letter-sized piece of paper is different. The international standard is based on SI units: 21.0 cm wide by 29.7 cm long.

a. Convert 21.0 cm to inches. Show your dimensional analysis setup.

b. Convert 29.7 cm to inches. Show your dimensional analysis setup.

c. State the dimensions, in inches, of the international standard for a letter-sized piece of paper.

d. Which piece of paper is longer: a U.S. letter-sized piece of paper, or an international letter-sized piece of paper?

Answer:

a) 8.267721 inches ≈ 8.3 inches

b) 11.6929197 inches ≈ 11.7 inches

c) It's dimensions in inches for the international standard for letter - sized for paper = 8.3 wide inches by 11.7 inches long

d) The International standard letter - sized paper is longer.

Explanation:

a. Convert 21.0 cm to inches. Show your dimensional analysis setup.

1 cm = 0.393701inch

21 cm =

Cross Multiply

21 cm × 0.393701inch/ 1 cm

= 8.267721 inches

Approximately 8.3 inches

b. Convert 29.7 cm to inches. Show your dimensional analysis setup.

1 cm = 0.393701inch

29.7 cm =

Cross Multiply

29.7 × 0.393701 inch/ 1 cm

= 11.6929197 inches

Approximately 11.7 inches

c. State the dimensions, in inches, of the international standard for a letter-sized piece of paper.

The international standard for a letter-sized has dimensions 21.0 cm wide by 29.7 cm long.

Where

21.0cm = 8.267721 inches

≈ 8.3 inches

29.7cm = 11.6929197 inches

≈ 11.7 inches

Hence, it's dimensions in inches = 8.3 inches by 11.7 inches.

d. Which piece of paper is longer: a U.S. letter-sized piece of paper, or an international letter-sized piece of paper?

U.S letter - sized paper = 8.5 inches wide by 11 inches long

International standard letter- sized paper = 8.3 wide inches by 11.7 inches long.

Hence, the International standard letter - sized paper is longer.

You might be interested in
Calculate the unit cell edge length for an 79 wt% Ag- 21 wt% Pd alloy. All of the palladium is in solid solution, and the crysta
ankoles [38]

Answer:

The edge length is 0.4036 nm

Solution:

As per the question:

Density of Ag, \rho = 10.49 g/cm^{3}

Density of Pd, \rho = 12.02 g/cm^{3}

Atomic weight of Ag, A = 107.87 g/mol

Atomic weight of Pd, A' = 106.4 g/mol

Now,

The average density, \rho_{a} = \frac{n A_{avg}} {V_{c}\times N_{A}}

where

V_{c} = a^{3}  = Volume of crystal lattice

a = edge length

n = 4 = no. of atoms in FCC

Therefore,

\rho_{a} = = \frac{n A_{avg}} {V_{c}\times N_{A}}

Therefore, the length of the unit cell is given as:

a = (\frac{nA_{avg}}{\rho_{a}\times N_{a}})^{1/3}            (1)

Average atomic weight is given as:

A_{avg} = \frac{100}{\frac{C_{Ag}}{A_{Ag}} + \frac{C_{Pd}}{A_{Pd}}}

where

C_{Ag} = 79 %

A_{Ag} = 107

C_{Pd} = 21%

A_{Pd} = 106

Therefore,

A_{avg} = \frac{100}{\frac{79}{107} + \frac{21}{106}} = 106.78

In the similar way, average density is given as:

\rho_{a} = \frac{100}{\frac{C_{Ag}}{\rho_{Ag}} + \frac{C_{Pd}}{\rho_{Pd}}}

\rho_{a} = \frac{100}{\frac{79}{10.49} + \frac{21}{12.02}} = 10.78 g/cm^{3}

Therefore, edge length is given by eqn (1) as:

a = (\frac{4\times 106.78}{10.78\times 6.023 X 10^23})^{1/3} = 4.036\times 10^{- 8} cm = 0.4036\times 10^{- 9} m = 0.4036 nm

5 0
3 years ago
If 30.45 grams of water is to be heated up 3.3 degrees to make baby
KengaRu [80]

Answer:

A. 420 J

Explanation:

Given the following data;

Mass = 30.45 g

Specific heat capacity = 4.18 J/g °C.

Temperature = 3.3°C

To find the quantity of heat;

Heat capacity is given by the formula;

Q = mct

Where;

Q represents the heat capacity or quantity of heat.

m represents the mass of an object.

c represents the specific heat capacity of water.

t represents the temperature.

Substituting into the equation, we have;

Q = 30.45 * 4.18 * 3.3

Q = 420.03 ≈ 420 Joules

8 0
3 years ago
What does attributed mean
Dmitriy789 [7]

Answer:

attribute is defined as a quality or characteristic of a person, place, or thing

Explanation:

6 0
3 years ago
Read 2 more answers
Describe and explain the motion of a small ball floating on a pond when waves travel across the pond
laila [671]
I think the answer is periodic motion.
4 0
3 years ago
Force F acts between a pair of charges, q1 and q2, separated by a distance d. For each of the statements, use the drop-down menu
lora16 [44]

The initial force between the two charges is given by:

F=k \frac{q_1 q_2}{d^2}

where k is the Coulomb's constant, q1 and q2 the two charges, d their separation. Let's analyze now the other situations:

1. F

In this case, q1 is halved, q2 is doubled, but the distance between the charges remains d.

So, we have:

q_1' = \frac{q_1}{2}\\q_2' = 2 q_2\\d' = d

So, the new force is:

F'=k \frac{q_1' q_2'}{d'^2}= k \frac{(\frac{q_1}{2})(2q_2)}{d^2}=k \frac{q_1 q_2}{d^2}=F

So the force has not changed.

2. F/4

In this case, q1 and q2 are unchanged. The distance between the charges is doubled to 2d.

So, we have:

q_1' = q_1\\q_2' = q_2\\d' = 2d

So, the new force is:

F'=k \frac{q_1' q_2'}{d'^2}= k \frac{q_1 q_2)}{(2d)^2}=\frac{1}{4} k \frac{q_1 q_2}{d^2}=\frac{F}{4}

So the force has decreased by a factor 4.

3. 6F

In this case, q1 is doubled and q2 is tripled. The distance between the charges remains d.

So, we have:

q_1' = 2 q_1\\q_2' = 3 q_2\\d' = d

So, the new force is:

F'=k \frac{q_1' q_2'}{d'^2}= k \frac{(2 q_1)(3 q_2)}{d^2}=6 k \frac{q_1 q_2}{d^2}=6F

So the force has increased by a factor 6.

8 0
3 years ago
Read 2 more answers
Other questions:
  • The pattern of repeating properties of elements revealed in the periodic table is known as the (Blank)
    15·2 answers
  • A person standing waist-deep in a swimming pool appears to have short legs because of light
    5·1 answer
  • Why do clouds tend to form well above the ground?
    10·2 answers
  • Calculate the energy that 1.5 kg of mass contains
    5·1 answer
  • The image shows streetlights powered by solar panels. Which sequence shows the energy transformation is taking place in these li
    14·2 answers
  • Review Multiple-Concept Example 7 in this chapter as an aid in solving this problem. In a fast-pitch softball game the pitcher i
    15·1 answer
  • Baking cake is what a physical or chemical change
    13·1 answer
  • تقطع اولا مسافة 8 km شمالا من البيت ثم تمشي شرقا حتى تكون ازاحتك من البيت 10km ما مقدار المسافة التي قطعتها شرقا
    9·1 answer
  • WILL VOTE MOST BRAINLIEST
    15·1 answer
  • A person trapped outside during a thunderstorm should
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!