Explanation:
V=IR; I=V/R
V=120V, R=10
I= 120/10=12
The current in the circuit is 12A
Answer : D , I know i’m correct !
Answer:
T= 37 day
Explanation:
To solve this exercise we will use the definition of angular velocity as the angular distance, which for a full period is 2pi between time.
w = T / t
The relationship between angular and linear velocity is
v = w r
w = v / r
We substitute everything in the first equation
v / r = 2π / t
t = 2π r / v
Let's reduce to the SI system
V = 2 km / s (1000m / 1km) = 2 10³ m / s
r= R = 6.96 10⁸ m
Let's calculate
t = 2π 6.96 10⁸/2 10³
t = 3.2 10⁶ s
T = t = 3.2 10⁶ s ( 1h/3600s) (1 day/24 h)
T= 37 day
Answer:
The the speed of the car is 26.91 m/s.
Explanation:
Given that,
distance d = 88 m
Kinetic friction = 0.42
We need to calculate the the speed of the car
Using the work-energy principle
work done = change in kinetic energy



Put the value into the formula


Hence, The the speed of the car is 26.91 m/s.
Answer: 9496200 joules
Explanation:
Gravitational potential energy, GPE is the energy possessed by the moving plane since it moves against gravity.
Thus, GPE = Mass m x Acceleration due to gravity g x Height h
Since Mass = 1900kg
g = 9.8m/s^2
h = 510 metres (units of height is metres)
Thus, GPE = 1900kg x 9.8m/s^2 x 510m
GPE = 9496200 joules
Thus, the gravitational potential energy of the airplane is 9496200 joules