Answer:
<h2>A. a spring & B. a well dried into an aquifer.</h2>
<span>Actually in this case heat energy is being transferred. Heat
energy or thermal energy is transferred from the burning of wood to the
sausages for it to be cooked. The sausage is being heated by the fire and is
absorbing the heat or thermal energy.</span>
Answer:
the gauge pressure at the upper face of the block is 116 Pa
Explanation:
Given the data in the question;
A cubical block of wood, 10.0 cm on a side.
height h = 1.50 cm = ( 1.50 × ( 1 / 100 ) ) m = 0.0150 m
density ρ = 790 kg/m³
Using expression for the gauged pressure;
p-p₀ = ρgh
where, p₀ is atmospheric pressure, ρ is the density of the substance, g is acceleration due to gravity and h is the depth of the fluid.
we know that, acceleration due to gravity g = 9.8 m/s²
so we substitute
p-p₀ = 790 kg/m³gh × 9.8 m/s² × 0.0150 m
= 116.13 ≈ 116 Pa
Therefore, the gauge pressure at the upper face of the block is 116 Pa
The total work <em>W</em> done by the spring on the object as it pushes the object from 6 cm from equilibrium to 1.9 cm from equilibrium is
<em>W</em> = 1/2 (19.3 N/m) ((0.060 m)² - (0.019 m)²) ≈ 0.031 J
That is,
• the spring would perform 1/2 (19.3 N/m) (0.060 m)² ≈ 0.035 J by pushing the object from the 6 cm position to the equilibrium point
• the spring would perform 1/2 (19.3 N/m) (0.019 m)² ≈ 0.0035 J by pushing the object from the 1.9 cm position to equilbrium
so the work done in pushing the object from the 6 cm position to the 1.9 cm position is the difference between these.
By the work-energy theorem,
<em>W</em> = ∆<em>K</em> = <em>K</em>
where <em>K</em> is the kinetic energy of the object at the 1.9 cm position. Initial kinetic energy is zero because the object starts at rest. So
<em>W</em> = 1/2 <em>mv</em> ²
where <em>m</em> is the mass of the object and <em>v</em> is the speed you want to find. Solving for <em>v</em>, you get
<em>v</em> = √(2<em>W</em>/<em>m</em>) ≈ 0.46 m/s
Answer:
The Answer is A They can damage hearing.
Explanation:
I took the Test