-identifies an electric charge
-it can identify its polarity (positive or negative) if you compare it to a charge that you already know
-can identify the magnitude of a charge (how big of a charge it is)
<span>We can use Coulomb's law to find the force F acting on the proton that is released.
F = k x Q1 x Q2 / r^2
k = 9 x 10^9
Q1 is the charge on one proton which is 1.6 x 10^{-19} C
Q2 is the same charge on the other proton
r is the distance between the protons
F = (9x10^9) x (1.6 x 10^{-19} C) x (1.6 x 10^{-19} C) / (10^{-3})^2
F = 2.304 x 10^{-22} N
We can use the force to find the acceleration.
F = ma
a = F / m
a = (2.304 x 10^{-22} N) / (1.67 x 10^{-27} kg)
a = 1.38 x 10^5 m/s^2
The initial acceleration of the proton is 1.38 x 10^5 m/s^2</span>
Answer:
R₂ / R₁ = D / L
Explanation:
The resistance of a metal is
R = ρ L / A
Where ρ is the resistivity of aluminum, L is the length of the resistance and A its cross section
We apply this formal to both configurations
Small face measurements (W W)
The length is
L = W
Area
A = W W = W²
R₁ = ρ W / W² = ρ / W
Large face measurements (D L)
Length L = D= 2W
Area A = W L
R₂ = ρ D / WL = ρ 2W / W L = 2 ρ/L
The relationship is
R₂ / R₁ = 2W²/L
Answer:
a) E = 0
b) 
Explanation:
The electric field for all points outside the spherical shell is given as follows;
a) 
From which we have;

E = 0/A = 0
E = 0
b) 


By Gauss theorem, we have;

Therefore, we get;

The electrical field outside the spherical shell


Therefore, we have;

Use Newton's second law F = mass * acceleration
In your problem F = 500, and we know gravity is working on it so use a = 9.81
Substitute into the equation
500 = m * 9.81
m = 50.97 kg