Answer:
15. 2.66 moles .
16. 2.09L.
Explanation:
Molarity of a solution is simply defined as the mole of solute per unit litre of the solvent. Mathematically, it is represented as:
Molarity = mole /Volume.
With the above formula, let us answer the questions given above
15. Data obtained from the question include the following:
Volume of solution = 1.4L
Molarity = 1.9M
Mole of solute =.?
Molarity = mole /Volume
1.9 = mole / 1.4
Cross multiply
Mole = 1.9 x 1.4
Mole = 2.66 moles
Therefore, the mole of the solute present in the solution is 2.66 moles.
16. Data obtained from the question include the following:
Mole of solute = 0.46 mole
Molarity = 0.22M
Volume of solvent (water) =.?
Molarity = mole /Volume
0.22 = 0.46/Volume
Cross multiply
0.22 x Volume = 0.46
Divide both side 0.22
Volume = 0.46/0.22
Volume = 2.09L
Therefore, 2.09L of water is required.
Answer:
SO₄²⁻(aq) +Sn²⁺(aq) +4H⁺ → H₂SO₃(aq) + Sn⁴⁺(aq) + H₂O
Explanation:
At first calculate the oxidation state of that element which undergoes oxidation as well as reduction.
for SO₄²⁻ the oxidation state of sulphur is +6 and H₂SO₃ the oxidation state of sulphur is +4
So balance equation is
(Reduction) SO₄²⁻ + 4H⁺+ 2e⁻ → H₂SO₃ + H₂O.........................................(1)
(oxidation) Sn²⁺ → Sn⁴⁺ + 2e⁻ .............................................................(2)
Adding equation 1 & 2
we get
SO₄²⁻(aq) +Sn²⁺(aq) +4H⁺ → H₂SO₃(aq) + Sn⁴⁺(aq) + H₂O
Answer: the answer is nucleus duh!!
Explanation:
J.J. Thomson's experiments with cathode ray tubes showed that all atoms contain tiny negatively charged subatomic particles or electrons. ... Rutherford's gold foil experiment showed that the atom is mostly empty space with a tiny, dense, positively-charged nucleus.
Answer:
b because no death and no emigration
Explanation: