Answer:
He.
Explanation:
- Graham's law states that the effusion rate is inversely proportional to the molecular weight. It means that the gas with the lowest molecular weight will have the highest effusion rate.
The molecular weights of the given gases are:
Cl₂ = 70.9 g/mol.
He = 2.0 g/mol.
O₂ = 32.0 g/mol.
Ne = 20.17 g/mol.
<em>Since He has the smallest molecular mass, so it will have the highest rate of effusion.</em>
<em></em>
Answer:
antimony-121 has the highest percent natural abundance
Explanation:
percent natural abundance;
121.76 = 120.90 x + 122.90 (1 - x)
121.76 = 120.90 x + 122.90 - 122.90x
121.76 = -2x + 122.90
121.76 - 122.90 = -2x
x= 121.76 - 122.90/ -2
x= 0.57
Where x and 1 - x refers to the relative abundance of each of the isotopes
Percent natural abundance of antimony-121 = 57 %
Percent natural abundance of antimony-123 = (1 - 0.57) = 43%
Let us remember that isotopy refers to a phenomenon in which atoms of the same element have the same atomic number but different mass numbers. This results from differences in the number of neutrons in atoms of the same element.
We can clearly see that antimony-121 has the highest percent natural abundance.
The correct answer is B.
Strong acids completely dissociates to give hydrogen ions . Weak bases can only partially dissociate to give hydroxide ions .
Therefore when equal amounts of acid and base are mixed, while Acid is completely dissociated and gives out hydrogen ions but base only gives out a fraction of hydroxide ions.
Therefore number of hydrogen ions in the solution will be higher than hydroxide ions, resulting in an acidic pH. Therefore pH <7
Answer:
P₂ = 1.0 atm
Explanation:
Boyles Law problem => P ∝ 1/V at constant temperature (T).
Empirical equation
P ∝ 1/V => P = k(1/V) => k = P·V => for comparing two different case conditions, k₁ = k₂ => P₁V₁ = P₂V₂
Given
P₁ = 1.6 atm
V₁ = 312 ml
P₂ = ?
V₂ = 500 ml
P₁V₁ = P₂V₂ => P₂ = P₁V₁/V₂ =1.6 atm x 312 ml / 500ml = 1.0 atm