At STP, or standard temperature and pressure, 1 mol of any gas will take up 22.4 liters of space. Assuming STP, 4.5 moles of H2 will take up 100.8L.
The partial pressure of hydrogen is 0.31 atm
calculation
find the number of hydrogen moles the container, that is
25/100 x 6.4 =1.6 moles of hydrogen
find the partial pressure for hydrogen in 1.6 moles
that is 6.4 moles= 1.24 atm
1.6 moles= ?
by cross multiplication
1.6moles x1.24 atm/ 6.4 moles= 0.31 atm
Answer:
The answer to the question is
The pressure of carbon dioxide after equilibrium is reached the second time is 0.27 atm rounded to 2 significant digits
Explanation:
To solve the question, we note that the mole ratio of the constituent is proportional to their partial pressure
At the first trial the mixture contains
3.6 atm CO
1.2 atm H₂O (g)
Total pressure = 3.6+1.2= 4.8 atm
which gives
3.36 atm CO
0.96 atm H₂O (g)
0.24 atm H₂ (g)
That is
CO+H₂O→CO(g)+H₂ (g)
therefore the mixture contained
0.24 atm CO₂ and the total pressure =
3.36+0.96+0.24+0.24 = 4.8 atm
when an extra 1.8 atm of CO is added we get Increase in the mole fraction of CO we have one mole of CO produces one mole of H₂
At equilibrium we have 0.24*0.24/(3.36*0.96) = 0.017857
adding 1.8 atm CO gives 4.46 atm hence we have
(0.24+x)(0.24+x)/(4.46-x)(0.96-x) = 0.017857
which gives x = 0.031 atm or x = -0.6183 atm
Dealing with only the positive values we have the pressure of carbon dioxide = 0.24+0.03 = 0.27 atm
Ethanoic (Acetic) acid is a weak acid and do not dissociate fully. Therefore its equilibrium state has to be considered here.

In this case pH value of the solution is necessary to calculate the concentration but it's not given here so pH = 2.88 (looked it up)
pH = 2.88 ==>
![[H^{+}]](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D)
=

= 0.001

The change in Concentration Δ
![[CH_{3}COOH]](https://tex.z-dn.net/?f=%5BCH_%7B3%7DCOOH%5D)
= 0.001

CH3COOH H+ CH3COOH
Initial

0 0
Change

-0.001 +0.001 +0.001
Equilibrium

- 0.001 0.001 0.001
Since the

value is so small, the assumption
![[CH_{3}COOH]_{initial} = [CH_{3}COOH]_{equilibrium}](https://tex.z-dn.net/?f=%5BCH_%7B3%7DCOOH%5D_%7Binitial%7D%20%3D%20%5BCH_%7B3%7DCOOH%5D_%7Bequilibrium%7D)
can be made.
![k_{a} = [tex]= 1.8*10^{-5} = \frac{[H^{+}][CH_{3}COO^{-}]}{[CH_{3}COOH]} = \frac{0.001^{2}}{x}](https://tex.z-dn.net/?f=%20k_%7Ba%7D%20%3D%20%5Btex%5D%3D%201.8%2A10%5E%7B-5%7D%20%20%3D%20%20%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5BCH_%7B3%7DCOO%5E%7B-%7D%5D%7D%7B%5BCH_%7B3%7DCOOH%5D%7D%20%3D%20%20%5Cfrac%7B0.001%5E%7B2%7D%7D%7Bx%7D%20)
Solve for x to get the required concentration.
note: 1.)Since you need the answer in 2SF don&t round up values in the middle of the calculation like I've done here.
2.) The ICE (Initial, Change, Equilibrium) table may come in handy if you are new to problems of this kind
Hope this helps!
1.) 28.0 grams of oxygen
28 grams (1 mole/16 grams per mole)=1.75 moles oxygen
2.)5.0 moles of Iron
5 moles(55.845 grams/1 mole)=279.225 grams Iron
3.) 452 grams Argon
452 grams(1 mole/39.948 grams)=11.315 moles Argon
4.) 16.5 moles Hydrogen
16.5 moles(1.01 grams/1 mole)=16.665 grams Hydrogen