<h2>Answer:</h2>
The mass of the system will remain the same if there is no conversion of mass to energy in the reaction.
<h3>Explanation:</h3>
- If the system is closed, then according to the law of mass conservation the mass of the reaction system will remain the same.
- <u><em>Law of conservation of the mass: In simple words, it is described as the mass of a closed system can never be changed, it may transfer from one form to another or change into energy.</em></u>
- But if the reaction involves energy transfer like heat or light production, in this case, the mass can be changed.
Answer:
The system will change its concentration to shift to a new equilibrium position.
Explanation:
For example in the Haber Process
N2 + 3H2 ⇄ 2NH3
If the pressure is increased the process will move to the right - to have more NH3 and less of the nitrogen and hydrogen.
Answer: AIP
There are two types of substances mixture and pure substance. Mixture has NO chemical formula and a pure substance has a chemical formula. There are two types of pure substances, elements (mono atomic and molecular) and compounds ( covalent and ionic).
Ionic compounds do not exist in independent molecular form. They form three dimensional crystal lattice, in which each ion is surrounded by oppositely charged ion. so the ratio of ion is called the formula unit
Answer:
<em>293.99 g </em>
OR
<em>0.293 Kg</em>
Explanation:
Given data:
Lattice energy of Potassium nitrate (KNO3) = -163.8 kcal/mol
Heat of hydration of KNO3 = -155.5 kcal/mol
Heat to absorb by KNO3 = 101kJ
To find:
Mass of KNO3 to dissolve in water = ?
Solution:
Heat of solution = Hydration energy - Lattice energy
= -155.5 -(-163.8)
= 8.3 kcal/mol
We already know,
1 kcal/mol = 4.184 kJ/mole
Therefore,
= 4.184 kJ/mol x 8.3 kcal/mol
= 34.73 kJ/mol
Now, 34.73 kJ of heat is absorbed when 1 mole of KNO3 is dissolved in water.
For 101 kJ of heat would be
= 101/34.73
= 2.908 moles of KNO3
Molar mass of KNO3 = 101.1 g/mole
Mass of KNO3 = Molar mass x moles
= 101.1 g/mole x 2.908
= 293.99 g
= 0.293 kg
<em><u>293.99 g potassium nitrate has to dissolve in water to absorb 101 kJ of heat. </u></em>