Answer:
v₀ = 13.9 10³ m / s
Explanation:
Let's analyze this exercise we can use the basic kinematics relationships to love the initial velocity and the acceleration we can look for from Newton's second law where force is gravitational attraction.
F = m a
G m M / x² = m dv / dt = m dv/dx dx/dt
G M / x² = dv/dx v
GM dx / x² = v dv
We integrate
v² / 2 = GM (-1 / x)
We evaluate between the lower limits where x = Re = 6.37 10⁶m and the velocity v = vo and the upper limit x = 2.50 10⁸m with a velocity of v = 8.50 10³ m/s
½ ((8.5 10³)² - v₀²) = GM (-1 /(2.50 10⁸) + 1 / (6.37 10⁶))
72.25 10⁶ - v₀² = 2 G M (+0.4 10⁻⁸ - 1.57 10⁻⁷)
72.25 10⁶ - v₀² = 2 6.63 10⁻¹¹ 5.98 10²⁴ (-15.3 10⁻⁸)
72.25 10⁶ - v₀² = -1.213 10⁸
v₀² = 72.25 10⁶ + 1,213 10⁸
v₀² = 193.6 10⁶
v₀ = 13.9 10³ m / s
Answer:
15000 m/s
Explanation:
You just need to multiply the wavelength with the frequency.
The electric potential V(z) on the z-axis is : V = 
The magnitude of the electric field on the z axis is : E = kб 2
( 1 - [z / √(z² + a² ) ] )
<u>Given data :</u>
V(z) =2kQ / a²(v(a² + z²) ) -z
<h3>Determine the electric potential V(z) on the z axis and magnitude of the electric field</h3>
Considering a disk with radius R
Charge = dq
Also the distance from the edge to the point on the z-axis = √ [R² + z²].
The surface charge density of the disk ( б ) = dq / dA
Small element charge dq = б( 2πR ) dr
dV
----- ( 1 )
Integrating equation ( 1 ) over for full radius of a
∫dv = 
V = ![\pi k\alpha [ (a^2+z^2)^\frac{1}{2} -z ]](https://tex.z-dn.net/?f=%5Cpi%20k%5Calpha%20%5B%20%28a%5E2%2Bz%5E2%29%5E%5Cfrac%7B1%7D%7B2%7D%20-z%20%5D)
= ![\pi k (\frac{Q}{\pi \alpha ^2})[(a^2 +z^2)^{\frac{1}{2} } -z ]](https://tex.z-dn.net/?f=%5Cpi%20k%20%28%5Cfrac%7BQ%7D%7B%5Cpi%20%5Calpha%20%5E2%7D%29%5B%28a%5E2%20%2Bz%5E2%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%20%20-z%20%5D)
Therefore the electric potential V(z) = 
Also
The magnitude of the electric field on the z axis is : E = kб 2
( 1 - [z / √(z² + a² ) ] )
Hence we can conclude that the answers to your question are as listed above.
Learn more about electric potential : brainly.com/question/25923373
-- It takes the brick 8.9 seconds to reach the ground.
-- At the instant of the "splat", it's falling at 89 m/s.
-- The mass doesn't matter. If not for air resistance, every object
would fall at the same rate. The answer is the same for a feather,
a rubber chicken, a brick, or a school bus.
Answer:
It is equal to the overall momentum before collision, so far no external object is involved.
Explanation:
Momentum is always conserved during collision as a rule. This is equal to the product of the mass and velocity. Thank you.