Answer:
16.6 kJ/°C
Explanation:
given,
Amount of heat absorbed = 45 kJ
initial temperature, T₁ = 25.5°C
final temperature, T₂ = 28.2°C
change in temperature = T₂ - T₁
= 28.2 - 25.5 = 2.7° C



Heat capacity of the object is equal to 16.6 kJ/°C
Answer:
a) 0.15 μC b) 9.4*10¹¹ electrons.
Explanation:
As the total charge must be conserved, the total charge on the spheres, after being brought to contact each other, and then separated, must be equal to the total charge present in the spheres prior to be put in contact:
Q = +8.2μC +9.0 μC +(-7.8 μC) + (-8.8 μC) = +0.6 μC
As the spheres are assumed perfect conductors, as they are identical, once in contact each other, the excess charge spreads evenly on each sphere, so the final charge, on each of them, is just the fourth part of the total charge:
Qs = Qt/4 = 0.6 μC / 4 = 0.15 μC.
b) As the charge has a positive sign, this means that each sphere has a defect of electrons.
In order to know how many electrons are absent in each sphere, we can divide the total charge by the charge of one electron, which is the elementary charge e, as follows:

Answer:
We just know that the metal is called Vibranium.
to place something is the table we need to know its atomic number and its mass. so if we can get that we can ans it.
Explanation:
Answer:
0.00325 moles/liter/second
Explanation:
The tangent line has a slope of (y2 -y1)/(x2 -x1) = (0.35-0.48)/(40-0) = -0.00325.
The rate of the reaction is about 0.00325 moles/liter/second.
_____
This is the rate of decrease of the concentration of A.