Answer:
m1=914.9kg
m2=604.9kg
m3=864.75kg
Explanation
I think we are suppose to find the mass of the crate.
The effective force that moves the body in positive x direction is 3615N
ΣFx = Σma
Then Fx=3615N
Then the masses be m1, m2 and m3
Then,
ΣF = Σ(ma)
3615=(m1+m2+m3)a
Given that a=1.516
The masses are
m1+m2+m3=, 2384.56. Equation 1
Between mass 1 and mass 2 is, F12=1387.
The effective force that pull mass 1 is 1387.
F12=m1 ×a
Therefore,
m1=F12/a
m1=1387/1.516
m1=914.9kg.
The effective force that pulls crate 1 and crate 2 is F23
F23=(m1+m2)a
Therefore
2304=(m1+m2)a
Therefore, since a=1.516
m1+m2=2304/1.516
m1+m2=1519.8kg
Since m1=914.9kg
So, m2=1519.8-m1
m2=1519.8-914.9
m2=604.9kg
Also from equation 1
m1+m2+m3=2384.56
Since m1=914.9kg and m2=604.9kg
Then, m3=2384.56-604.9-914.9
m3=864.75kg
Answer:
≈19.144°C.
Explanation:
all the details are in the attachment.
Note, that c₁, m₁, t₁ are the parameters of the sample of brass; c₂, m₂ and t₂ are the parameters of the sample of water.
P.S. change the provided design according Your requirements.
Answer:
A major challenge in the drug delivery field is to enhance transport of therapeutics across biological barriers such as the blood brain barrier (BBB), the small intestine, nasal, skin and the mouth mucosa.
The answer would be to research the need. This should have been done before the project began.