1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zepelin [54]
3 years ago
11

Why does the density of a substance remain the same for different amount of the substance

Physics
1 answer:
tresset_1 [31]3 years ago
6 0

Think of it this way: 
-- Any time you have something that means (some number) PER UNIT,
it doesn't matter how many units there are on the table or in the bucket,
because that amount doesn't change the (number) PER UNIT.

-- If oranges cost $1 PER POUND, it doesn't matter how many pounds
you buy, the whole bagful is still $1 PER POUND.

-- If a certain salad dressing has 40 calories PER Tablespoon, it doesn't
matter whether you eat a drop of it or drink the whole jar.  You still get
40 calories PER Tablespoon.

-- Density means '(mass) PER unit of volume'.  Whether you have a tiny
chip of the substance or a whole truckload of it, there's still the same
amount of mass IN EACH unit of volume.

You might be interested in
How many new facilities does an average facility manager build during his or her career?
wlad13 [49]

An average facility manager can build one new facility during his or her career.

 

<span>A </span>facilities manager<span> is the ultimate organiser, making sure that a workplace meets the needs of employees by managing all of the required services. In this job, you will be responsible for the </span>management<span> of services and processes that support the core business of an organisation.</span>

8 0
3 years ago
A 50-gram sample of water is initially at a temperature of 22 °C. The sample is heated until the temperature is 32 °C The specif
forsale [732]

Answer:

500cal

Explanation:

Given parameters:

Mass of water  = 50g

Initial temperature  = 22°C

Final temperature  = 32°C

Specific heat of water  = 1cal/g

Unknown:

Amount of heat absorbed by the water in calories  = ?

Solution:

To solve this problem, we use the expression below:

       H  = m c Ф

H is the amount of heat absorbed

m is the mass

c is the specific heat capacity

Ф is the temperature change

       H  = 50 x 1 x (32  - 22)  = 500cal

5 0
3 years ago
Why are potassium molecules likely to enter a red blood cell?
noname [10]
<span>they have to be selective permeable to filter out the waste products but allow the nutrients and blood cells to pass through. </span>
5 0
3 years ago
A sample of monatomic ideal gas occupies 5.00 L at atmospheric pressure and 300 K (point A). It is warmed at constant volume to
leonid [27]

Answer:

(a) 0.203 moles

(b) 900 K

(c) 900 K

(d) 15 L

(e) A → B, W = 0, Q = Eint = 1,518.91596 J

B → C, W = Q ≈ 1668.69974 J Eint = 0 J

C → A, Q = -2,531.5266 J, W = -1,013.25 J, Eint = -1,518.91596 J

(g) ∑Q = 656.089 J, ∑W =  655.449 J, ∑Eint = 0 J

Explanation:

At point A

The volume of the gas, V₁ = 5.00 L

The pressure of the gas, P₁ = 1 atm

The temperature of the gas, T₁ = 300 K

At point B

The volume of the gas, V₂ = V₁ = 5.00 L

The pressure of the gas, P₂ = 3.00 atm

The temperature of the gas, T₂ = Not given

At point C

The volume of the gas, V₃ = Not given

The pressure of the gas, P₃ = 1 atm

The temperature of the gas, T₂ = T₃ = 300 K

(a) The ideal gas equation is given as follows;

P·V = n·R·T

Where;

P = The pressure of the gas

V = The volume of the gas

n = The number of moles present

R = The universal gas constant = 0.08205 L·atm·mol⁻¹·K⁻¹

n = PV/(R·T)

∴ The number of moles, n = 1 × 5/(0.08205 × 300) ≈ 0.203 moles

The number of moles in the sample, n ≈ 0.203 moles

(b) The process from points A to B is a constant volume process, therefore, we have, by Gay-Lussac's law;

P₁/T₁ = P₂/T₂

∴ T₂ = P₂·T₁/P₁

From which we get;

T₂ = 3.0 atm. × 300 K/(1.00 atm.) = 900 K

The temperature at point B, T₂ = 900 K

(c) The process from points B to C is a constant temperature process, therefore, T₃ = T₂ = 900 K

(d) For a constant temperature process, according to Boyle's law, we have;

P₂·V₂ = P₃·V₃

V₃ = P₂·V₂/P₃

∴ V₃ = 3.00 atm. × 5.00 L/(1.00 atm.) = 15 L

The volume at point C, V₃ = 15 L

(e) The process A → B, which is a constant volume process, can be carried out in a vessel with a fixed volume

The process B → C, which is a constant temperature process, can be carried out in an insulated adjustable vessel

The process C → A, which is a constant pressure process, can be carried out in an adjustable vessel with a fixed amount of force applied to the piston

(f) For A → B, W = 0,

Q = Eint = n·cv·(T₂ - T₁)

Cv for monoatomic gas = 3/2·R

∴ Q = 0.203 moles × 3/2×0.08205 L·atm·mol⁻¹·K⁻¹×(900 K - 300 K) = 1,518.91596 J

Q = Eint = 1,518.91596 J

For B → C, we have a constant temperature process

Q = n·R·T₂·㏑(V₃/V₂)

∴ Q = 0.203 moles × 0.08205 L·atm/(mol·K) × 900 K × ln(15 L/5.00 L) ≈ 1668.69974 J

Eint = 0

Q = W ≈ 1668.69974 J

For C → A, we have a constant pressure process

Q = n·Cp·(T₁ - T₃)

∴ Q = 0.203 moles × (5/2) × 0.08205 L·atm/(mol·K) × (300 K - 900 K) = -2,531.5266 J

Q = -2,531.5266 J

W = P·(V₂ - V₁)

∴ W = 1.00 atm × (5.00 L - 15.00 L) = -1,013.25 J

W = -1,013.25 J

Eint = n·Cv·(T₁ - T₃)

Eint = 0.203 moles × (3/2) × 0.08205 L·atm/(mol·K) × (300 K - 900 K) = -1,518.91596 J

Eint = -1,518.91596 J

(g) ∑Q = 1,518.91596 J + 1668.69974 J - 2,531.5266 J = 656.089 J

∑W = 0 + 1668.69974 J -1,013.25 J = 655.449 J

∑Eint = 1,518.91596 J + 0 -1,518.91596 J = 0 J

5 0
3 years ago
When one "throws” a punch, the forearm applies force to the fist. Consider a(n) 0.75 kg fist that goes from rest to a
deff fn [24]
Formula for acceleration

6 0
3 years ago
Other questions:
  • Rosa goes into the hospital with her son.
    15·2 answers
  • A series of steps that allows someone to conduct an experiment are called a
    5·1 answer
  • A skier halfway between the top and bottom of a hill. Which statement best describes the skier?
    9·1 answer
  • Describe some precautions needed to increase the safety of participants in the sports of football.
    7·1 answer
  • Arrange the core steps of the scientific method in sequential order.
    7·2 answers
  • Brainliest and 100 POINTS
    7·2 answers
  • Define fundamental unit.​
    14·1 answer
  • An object of mass 8kg is attached to massless string of length 2m and swum with a tangential velocity of 3 what is the tension o
    10·1 answer
  • A glass of water has a temperature of 31 degrees Celsius. What state of matter is it in?
    7·1 answer
  • when a metal sphere is dropped in to a tall cylinder containing liquid its acceleration is g÷2 (gravity over 2) show that : dens
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!