Answer:
Let the mass of the book be "m", acceleration due to gravity be "g", velocity be "v" and height be "h".
Now if we are holding a book at a certain height (h), <em><u>the potential energy will be maximum which is equal to mass× acceleration due to gravity× height (= mgh)</u>.</em>
(Remember: kinetic energy =0)
Now we consider that the book is dropped, in this case a force will act downward towards the centre of the earth, <em><u>Force= mass× acceleration due to gravity (F=mg)</u></em>. It is equal to the weight of the book.
While the book is falling, the potential energy stored in the book converts into kinetic energy and strikes the floor with <em><u>the maximum kinetic energy= (1/2)×mass×velocity² (=1/2mv²)</u>.</em>
(Remember: kinetic energy=0)
Due to this process the whole energy is conserved.
As the potential energy decreases kinetic energy increases.
Answer:
B
Explanation:
That's the answer. Hope it helped!
Calculate the magnetic field strength at the ground. Treat the transmission line as infinitely long. The magnetic field strength is then given by:
B = μ₀I/(2πr)
B = magnetic field strength, μ₀ = magnetic constant, I = current, r = distance from line
Given values:
μ₀ = 4π×10⁻⁷H/m, I = 170A, r = 8.0m
Plug in and solve for B:
B = 4π×10⁻⁷(170)/(2π(8.0))
B = 4.25×10⁻⁶T
The earth's magnetic field strength is 0.50G or 5.0×10⁻⁵T. Calculate the ratio of the line's magnetic field strength to earth's magnetic field strength:
4.25×10⁻⁶/(5.0×10⁻⁵)
= 0.085
= 8.5%
The transmission line's magnetic field strength is 8.5% of that of earth's natural magnetic field. This is no cause for worry.
Answer:
the net force would be 3N in the upward direction since the two forces acting on the left and right of the object cancel out.
Explanation: