To solve this problem we apply the thermodynamic equations of linear expansion in bodies.
Mathematically the change in the length of a body is subject to the mathematical expression

Where,
Initial Length
Thermal expansion coefficient
Change in temperature
Since we have values in different units we proceed to transform the temperature to degrees Celsius so


The coefficient of thermal expansion given is

The initial length would be,

Replacing we have to,




This means that the building will be 35.5cm taller
Answer:
163.35
__________________________________________________________
<u>We are given:</u>
Mass of the object (m) = 36.3 kg
Velocity of the object (v) = 3 m/s
<u>Kinetic Energy of the object:</u>
We know that:
Kinetic Energy = 1/2(mv²)
KE = 1/2(36.3)(3)² [replacing the variables with the given values]
KE = 18.15 * 9
KE = 163.35 Joules
Hence, the cart has a Kinetic Energy of 163.35 Joules
It is based on the idea that all the present continents were on supercontinent.
The statement that describes how work and power are similar is D. you must know time and energy to calculate both.
I am not completely sure though, so I hope this helps. :)
The line that should be secured first in pushing the boat
away from the dock in preparation to dock is the bow line. When the bow line is
secured, it is best to reverse it and turn to the dock, this will engage the
line to tighten in a way that will help it swing back in the dock.