Answer:
4 smaller disks
Explanation:
We are given;
Mass of smaller and larger disks = M
Radius of smaller disk = R
Radius of larger disk = 4R
Formula for moment of inertia about cylinder axis is:
I = ½MR²
Thus;
For small disk, I_small = ½MR²
For large disk, I_large = ½M(2R)² = 2MR²
We are told that moment of inertia of System A consists of two of the larger disks. Thus;
I_A = 2 × I_large = 2 × 2MR²
I_A = 4MR²
We are also told that System B consists of one of the larger disks and a number of the smaller disks. Thus;
I_B = I_large + n(I_small)
Where n is the number of smaller disks.
I_B = 2MR² + n(½MR²)
I_B = MR²(2 + n/2)
We are told that the moment of inertia for system A equals the moment of inertia for system B. Thus;
I_A = I_B
So;
4MR² = MR²(2 + n/2)
MR² will cancel out to give;
4 = 2 + n/2
Multiply through by 2 to give;
8 = 4 + n
n = 8 - 4
n = 4
Answer: If all forces acting on a car are zero, than the cars speed is zero since there are no forces to push or pull the car :)
Explanation:
Answer:
The leaves of the electroscope move further apart.
Explanation:
This is what happens; when the positive object is brought near the top, negative charges migrating from the gold leaves to the top. This is because the negative charges in the gold are attracted by the positive charge. Thus, it leaves behind a net positive charge on the leaves, though the scope remains neutral overall. To that effect, the leaves repel each other and move apart. If a finger touches the top of the electroscope at the moment when the positive object remains near the top, it basically grounds the electroscope and thus the net positive charge in the leaves flows to the ground through the finger. However, the positive object continues to "hold" negative charges in place at the top. Ar this moment the gold leaves have lost their net positive charge, so they no longer repel, and they move closer together. If the positive object is moved away, the negative charges at the top are no longer attracted to the top, and they redistribute themselves throughout the electroscope, moving into the leaves and charging them negatively.
Thus, the leaves move apart from each other again and we now have a negatively charged electroscope. If a negatively charged object is now brought close to the top, but without touching, the negative charges already in the electroscope will be repelled down toward the leaves, thereby making them more negative, causing them to repel more, and hence move even further apart.
So, the leaves move further apart.
A. The English system uses one unit for each category of measurement.
There's no digram because I'm mr lemonade mr French fries