Four of them pass a point every second.
Explanation:
c. if the vector is oriented at 0° from the X -axis.
<span> attraction between the relative abundance of electrons in one object and protons in the other
</span>
Answer:
The angular velocity is 15.37 rad/s
Solution:
As per the question:

Horizontal distance, x = 30.1 m
Distance of the ball from the rotation axis is its radius, R = 1.15 m
Now,
To calculate the angular velocity:
Linear velocity, v = 
v = 
v = 
v = 
Now,
The angular velocity can be calculated as:

Thus

The amount of movement, linear momentum, momentum or momentum is a physical quantity derived from a vector type that describes the movement of a body in any mechanical theory. In classical mechanics, the amount of movement is defined as the product of body mass and its velocity at a given time.
p= mv
Where,
m = mass
v = Velocity
Our values are given as,


Replacing we have that,


Therefore the momentum is 