Answer:
<em>No, a rigid body cannot experience any acceleration when the resultant force acting on the body is zero.</em>
Explanation:
If the net force on a body is zero, then it means that all the forces acting on the body are balanced and cancel out one another. This sate of equilibrium can be static equilibrium (like that of a rigid body), or dynamic equilibrium (that of a car moving with constant velocity)
For a body under this type of equilibrium,
ΣF = 0 ...1
where ΣF is the resultant force (total effective force due to all the forces acting on the body)
For a body to accelerate, there must be a force acting on it. The acceleration of a body is proportional to the force applied, for a constant mass of the body. The relationship between the net force and mass is given as
ΣF = ma ...2
where m is the mass of the body
a is the acceleration of the body
Substituting equation 2 into equation 1, we have
0 = ma
therefore,
a = 0
this means that<em> if the resultant force acting on a rigid body is zero, then there won't be any force available to produce acceleration on the body.</em>
<em></em>
C.figure 3 is the answer had the same and got is right
Answer:
distance= velocity ×time
distance= 62×10
distance=620m
hope it helps you mate please mark me as brainliast
Answer:
Explanation:
Work is defined as the scalar product of force and distance
W=F•d
Given that
F = 8.5i + -8.5j. +×-=-
F=8.5i-8.5j
d = 2.5i + cj
If the work in the practice is zero, then W=0
therefore,
W=F•ds
0=F•ds
0=(8.5i -8.5j)•(2.5i + cj)
Note that
i.i=j.j=k.k=1
i.j=j.i=k.i=i.k=j.k=k.j=0
So applying this
0=(8.5i -8.5j)•(2.5i + cj)
0= (8.5×2.5i.i + 8.5×ci.j -8.5×2.5j.i-8.5×cj.j)
0=21.25-8.5c
Therefore,
8.5c=21.25
c=21.25/8.5
c=2.5
Answer:
100 cc
Explanation:
Heat released in cooling human body by t degree
= mass of the body x specific heat of the body x t
Substituting the data given
Heat released by the body
= 70 x 3480 x 1
= 243600 J
Mass of water to be evaporated
= 243600 / latent heat of vaporization of water
= 243600 / 2420000
= .1 kg
= 100 g
volume of water
= mass / density
= 100 / 1
100 cc
1 / 10 litres.