It's the Doppler Effect that "up and down sound."
I was on Yahoo--- Brainly doesn't have an option for Credientials or Site credit, so I'll just put this in the quotes:
<span>The formula for doppler effect is always (s is speed and f is frequency): </span>
<span>f_perceived.by.observer = f_of.emitted.wave * (s_wave + s_observer) / (s_wave + s_source.of.wave) </span>
<span>And you should pay attention to the signs: </span>
<span>s_observer is positive if the receiver is moving towards the source, negative otherwise </span>
<span>s_source.of.wave is positive if the source is moving away from the observer, negative otherwise </span>
<span>Applying it to this case: </span>
<span>s_source.of.wave = ? (positive), speed of ambulance </span>
<span>s_observer = + 2.44 m/s speed cyclist </span>
<span>f_of.emitted.wave =1800 Hz frequency of whine </span>
<span>f_perceived.by.observer = 1760 frequency heard by cyclist </span>
<span>s_wave = 343 m/s speed of sound in air </span>
<span>Now you know every value in the equation for doppler effect except by s_source.of.wave, so you can solve for s_source.of.wave.</span>
Explanation:
By the second law of Newton we get the relation
F = ma
1. Amperes, is the SI unit (also a fundamental unit) responsible for current.
2.
Δq over Δt technically
Rearrange for Δq
I x Δt = Δq
1.5mA x 5 = Δq
Δq = 0.0075
Divide this by the fundamental charge "e"
Electrons: 0.0075 / 1.60 x 10^-19
Electrons: 4.6875 x 10^16 or 4.7 x 10^16
3. So we know that the end resistances will be equal so:
ρ = RA/L
ρL = RA
ρL/A = R
Now we can set up two equations one for the resistance of the aluminum bar and one for the copper: Where 1 represents aluminum and 2 represents copper

We are looking for L2 so we can isolate using algebra to get:

If you fill in those values you get 0.0205
or 2.05 cm
Answer: Option B: 1.3×10⁵ W
Explanation:


Work Done, 
Where s is displacement in the direction of force and F is force.

where, v is the velocity.
It is given that, F = 5.75 × 10³N
v = 22 m/s
P = 5.75 × 10³N×22 m/s = 126.5 × 10³ W ≈1.3×10⁵W
Thus, the correct option is B
Answer:
λ = 28,14 m
Explanation:
To find the wavelength of the wave you use the following formula:
(1)
v: speed of the wave = 1,97 m/s
λ: wavelength
f: frequency of the wave = 0,07 Hz
You replace the values of v and f in the equation (1) and solve for λ:

hence, the wavelength of the wave is 28,14 m