Answer: spectroscopy
Spectroscopy is the separation of the light in the different wavelengths and spectrophotometry measures the intensities of the different components of the light to get the composition of substances.
We have the following equation for height:
h (t) = (1/2) * (a) * t ^ 2 + vo * t + h0
Where,
a: acceleration
vo: initial speed
h0: initial height.
The value of the acceleration is:
a = -g = -9.8 m / s ^ 2
For t = 0 we have:
h (0) = (1/2) * (a) * 0 ^ 2 + vo * 0 + h0
h (0) = h0
h0 = 0 (reference system equal to zero when the ball is hit).
For t = 5.8 we have:
h (5.8) = (1/2) * (- 9.8) * (5.8) ^ 2 + vo * (5.8) + 0
(1/2) * (- 9.8) * (5.8) ^ 2 + vo * (5.8) + 0 = 0
vo = (1/2) * (9.8) * (5.8)
vo = 28.42
Substituting values we have:
h (t) = (1/2) * (a) * t ^ 2 + vo * t + h0
h (t) = (1/2) * (- 9.8) * t ^ 2 + 28.42 * t + 0
Rewriting:
h (t) = -4.9 * t ^ 2 + 28.42 * t
The maximum height occurs when:
h '(t) = -9.8 * t + 28.42
-9.8 * t + 28.42 = 0
t = 28.42 / 9.8
t = 2.9 seconds.
Answer:
The ball was at maximum elevation when:
t = 2.9 seconds.
Answer:
Distance covered to top of the hill was : 1.755 km
Explanation:
Initial velocity = 35 km/hr
Acceleration = 2.0 km/hr²
Time taken to accelerate = 3 minutes = 3/60 hours = 1/20 hours
Formula for acceleration : a = Δv /t
v-u/t ---where u is initial velocity , v is final velocity and t is time taken for acceleration
v- 35 / 0.05 = 2
v = 35.10 km/h
Formula for distance is product of speed and time
Distance covered = 35.10 * 0.05 = 1.755 km
Answer:
Compression in the spring, x = 3.7 cm
Explanation:
It is given that,
Mass of the book, m = 1.6 kg
It can be assumed the spring constant of the spring is, k = 840 N/m
As the book moves down, the change in potential energy of the book is converted to spring potential energy of compression. The mathematical expression is as follows :


x = 0.037 meters
or
x = 3.7 cm
So, the spring is compressed to a distance of 3.7 cm. Hence, this is the required solution.