I believe the answer is a balance or mechanical scale
Answer is: the average atomic mass 217.606 amu.
Ar₁= 203.973 amu; the average atomic mass of isotope.
Ar₂ = 205.9745 amu.
Ar₃ = 206.9745 amu.
Ar₄ = 207.9766 amu.
ω₁ = 1.40% = 0.014; mass percentage of isotope.
ω₂ = 24.10% = 0.241.
ω₃ = 22.10% = 0.221.
ω₄ = 57.40% = 0.574.
Ar = Ar₁ · ω₁+ Ar₂ · ω₂ + Ar₃ · ω₃ + Ar₄ · ω₄.
Ar = 203.973 amu · 0.014 + 205.9745 amu · 0.241 + 206.9745 amu · 0.221 + 207.9766 amu · 0.574.
Ar = 2.855 amu + 49.632 amu + 45.741 amu + 119.378 amu.
Ar = 217.606 amu.
But abundance of isotopes is greater than 100%.
It should be lead, with the fourth isotope weighs 207.9766 amu and an abundance of 52.40.
81. There is 1 carbon, 2 chlorine and fluorine atoms in Freon 12. To draw them it forms a cross with C in the middle and Cl and F both on the opposite side.
If you melt and cool silicon dioxide under very special conditions
<span>in the laboratory we can grow a single </span>crystalline<span> form of </span>
<span>silicon dioxide that we call quartz. In quartz crystals all of </span>
<span>the molecules are aligned and bonded together in a regular three </span>
<span>dimensional tetrahedral structure forming a very hard, transparent </span>
<span>material with special electronic properties. </span>