Assuming that the gas acts like an ideal gas, we can
calculate for the final volume using the ideal gas law:
PV = nRT
Where P = pressure, V = volume, n = number of moles, R = gas
constant, and T = temperature
Assuming that P, n, and R are constant throughout the
process, we can define another constant K:
V / T = K where
K = nR / P
Equating the initial and final states:
Vi / Ti = Vf / Tf
Substituting the given values:
11.5 cm^3 / 415 K = Vf / 200 K
Vf = 5.54 cm^3
Answer:
Explanation:
There are changes in the chemical composition of the word.
There's light energy given off.
There's heat energy given up.
Ca-Cl is an ionic bond. We know this because the difference between their electronegativities is 2.16.The electronegativity tells us which atom will attract the electron more than the other. Hence, chlorine attracts the electron a lot more than the calcium.A difference of more than 1.6 (or 1.7 depending on the source) implies that the electrons are so unevenly shared, that the bond is ionic, rather than polar covalent.
Answer:
D. 7
Explanation:
The halogens are found in Group 7 of the Periodic Table. If Bromine is a halogen, then that means it would be found in Group 7. Also, elements in Group 7 have 7 electrons in its outer shell, Bromine would have 7 electrons in its outer shell.
Answer:
I'm sorry but I'm not doing the whole test
Explanation: