Answer:
Formation of intermolecular hydrogen bonding between water molecules and molecules of n-butanol
Explanation:
Low molecular weight alcohols are miscible with water in all proportions. The reason for this is that, when a low molecular weight alcohol is dissolved in water, intermolecular hydrogen bonds are formed between the low molecular weight alcohol and water molecules.
Low molecular weight alcohols such as n-butanol contain the polar -OH group which interacts with water via hydrogen bonding.
____NaNO3 + ___PbO --> ___Pb(NO3)2 + ___Na[2]O
To balace the eqaution, you need to have the same number of atoms for each element on both the reactant (left) and product (right) side.
To start off, you wanna know the number of atoms in each element on both sides, so take it apart:
[reactants] [product]
Na- 1 Na- 2
N- 1 N- 2(it's 2 because the the subscript [2] is outside of the parenthesis)
O- 4 O- 7 (same reason as above)
Pb- 1 Pb- 1
Na is not balanced out, so add a coefficient to make it the same on both sides.In this case, multiply by 2:
2NaNO3
Now Na is balanced, but the N and O are also effected by this, so they also have to be multiplied by 2 and they become:
Na- 2 Na- 2
N- 2 N- 2 (it balanced out)
O- 7 (coefficient times subscript, plus lone O) O- 7 (balanced out)
Pb was already balanced so no need to mess with it, just put a 1 where needed (it doesn't change anything).
Now to put it back together, it will look like this:
2NaNO3 + 1PbO --> 1Pb(NO3)2 + 1Na[2]O
The answer to this question would be: alkaline earth metal
Alkali earth metal is the second column group of the periodic table. In this group, the element has 2 extra electrons in their outer cells. That is why most of this metal has 2+ charge.
Their neighbor is the alkali metal which was the first column of the periodic table. The name is similar so don't confused and mix them each other.
Answer:
Yes. Weight is the product of mass times gravitational acceleration. So all you have to do is vary the gravitational field and you vary weight.
Explanation:
Answer:
a). Coordination no. of
= 6
b). Coordination no. of
= 6
Explanation:
Coordination number is defined as number of donar atoms bonded to the central atom of the complex ion.
a). Coordination no. of
= 6
en or ethylenediamine is a bidentate ligand.
In bidentate ligand, two atoms directly bonded to the central atom.
NH3 is a unidentate ligand.
So, coordination no.= No. of bidentate ligand x 2 + No. of unidentate ligand
= 
b). Coordination no. of
= 6
Ethylenediamine (en) is a bidentate ligand.
oxalate ion (ox) is also a bidentate ligand.
Cl is a unidentate ligand
So, coordination no.= No. of bidentate ligand x 2 + No. of unidentate ligand
= 