Orbital
All atoms have the same number of electrons as protons. Negative electrons are attracted to the positive nucleus. This force of attraction keeps electrons constantly moving around the nucleus. The region where an electron is most likely to be found is called an orbital.
Here you go :)
Answer:
<u><em>Arrhenius Acid:</em></u>
According to Arrhenius concept, Acids are proton donors.
Since H₂SO₄ have a proton (H⁺ ion) and it can donate it to be made a sulphate ion, So it is an Arrhenius acid.
See the following reaction =>
<u><em>H₂SO₄ + H₂O => HSO₄ + H₃O⁺</em></u>
<u><em>Arrhenius Base:</em></u>
An Arrhenius base is a a proton acceptor.
KOH accepts the proton to to made to KOH₂ and a proton acceptor.
See the following reaction =>
<u><em>KOH + H₂o => KOH₂ + OH⁻</em></u>
<u><em></em></u>
A is correct................
Answer:
32.8%
Explanation:
All of the Pb⁺² species precipitated as lead(II) cromate, PbCrO₄ (we know this as excess K₂CrO₄ was used).
First we convert 0.130 g of PbCrO₄ into moles, using its molar mass:
- 0.130 g ÷ 323 g/mol = 4.02x10⁻⁴ mol PbCrO₄
There's 1 Pb⁺² mol per PbCrO₄ mol, so in total 4.02x10⁻⁴ moles of Pb⁺² were in the ethanoate sample.
We <u>convert those 4.02x10⁻⁴ moles of Pb into grams</u>:
- 4.02x10⁻⁴ mol * 207 g/mol = 0.083 g Pb
Finally we calculate the percentage composition of Pb:
- 0.083 g Pb / 0.254 g salt * 100% = 32.8%