Answer:
Space junk is travelling so fast that a collision with an astronaut or a spacecraft could be disastrous.
Explanation:
Space junk orbits the Earth at speeds of about 28 000 km/h.
That's so fast that even an orbiting fleck of paint has enough kinetic energy to cause impact craters on the surface of a spacecraft. They are even more dangerous to an astronaut on a space walk.
Much of the space debris is larger and more dangerous than a fleck of paint.
One rough estimate of the amount of space debris is
<em> </em><u>Size</u><em> </em> <u>Number of objects</u>
< 1 cm 200 000 000
1 cm to 10 cm 700 000
> 10 cm 30 000
Satellites, etc. 18 000
The chances of collision are small, but any collision can be disastrous.
Answer:
Total Ionic equation:
H⁺(aq) + NO₃⁻ (aq) + Na⁺(aq) + OH⁻(aq) → H₂O(l) + Na⁺(aq) + NO₃⁻ (aq)
Explanation:
Chemical equation:
HNO₃ + NaOH → NaNO₃ + H₂O
Balanced chemical equation:
HNO₃(aq) + NaOH(aq) → NaNO₃(aq) + H₂O(l)
Total Ionic equation:
H⁺(aq) + NO₃⁻ (aq) + Na⁺(aq) + OH⁻(aq) → H₂O(l) + Na⁺(aq) + NO₃⁻ (aq)
Net ionic equation:
H⁺(aq) + OH⁻(aq) → H₂O(l)
The NO₃⁻ (aq) and Na⁺ (aq) are spectator ions that's why these are not written in net ionic equation. The water can not be splitted into ions because it is present in liquid form.
Spectator ions:
These ions are same in both side of chemical reaction. These ions are cancel out. Their presence can not effect the equilibrium of reaction that's why these ions are omitted in net ionic equation
Answer:
547.7 g of C₆H₁₂O₆
Solution:
The balance chemical equation is as follow,
C₆H₁₂O₆ + 6 O₂ → 6 CO₂ + 6 H₂O
According to equation,
6 moles of O₂ burns = 180.56 g of C₆H₁₂O₆
So,
18.2 moles of O₂ will burn = X g of C₆H₁₂O₆
Solving for X,
X = (18.2 mol × 180.56 g) ÷ 6 mol
X = 547.7 g of C₆H₁₂O₆
Explanation:
Below are attachments containing the graph and solution.
Boiling happens much faster! Boiling also takes place at the bottom of the fluid whereas evaporation takes place at the top.
Hope this helps!