<span>Ionic bonding between sodium and phosphate ions.</span>
Answer:
a) H2SO4 + 2KOH -> 2H2O + K2SO4
b) 9.809 ml
Explanation:
Number of Moles = Mass/ Molar Mass
Therefore: Mass = Number of moles * Molar Mass
--------------------------------------------
Molar mass of H2SO4:
H2= 2.02
S= 32.07
O4= 64
--------------------------------------------
H2SO4 has the molar mass of 98.09
--------------------------------------------
the Moles of H2SO4 is given to be 0.100M
Therefore:
Mass= 98.09*0.1
= 9.809g
---------------------------------------------------
Assuming that 1 g= 1 ml, the volume of sulfuric acid is 9.809 ml.
The number of valence electrons of an element can be determined by the periodic table group (vertical column) in which the element is categorized
Answer: Option (c) is the correct answer.
Explanation:
Activation energy or free energy of a transition state is defined as the minimum amount of energy required to by reactant molecules to undergo a chemical reaction.
So, when activation energy is decreased then molecules with lesser amount of energy can also participate in the reaction. This leads to an increase in rate of reaction.
Also, increase in temperature will help in increasing the rate of reaction.
Whereas at a given temperature, every molecule will have different energy because every molecule travels at different speed.
Hence, we can conclude that out of the given options false statement is that at a given temperature and time all molecules in a solution or a sample will have the same energy.
Answer:
Chlorine gas.
Explanation:
Hello!
In this case, the undergoing chemical reaction is:

Thus, given the moles of reacting both sodium and chlorine, we compute the moles of sodium chloride yielded by each reactant by considering the 2:2 and 1:2 mole ratios:

Thus, since chlorine yields less moles of sodium chloride, we infer it is the limiting reactant.
Best regards!