By definition, we have to:
Newton's first law states that any object will remain in a state of rest or with a uniform rectilinear motion unless an external force acts on it.
Therefore, according to the first law of Newton, if the object is already in motion and has no force acting on it then, it will remain with a uniform rectilinear motion.
Answer:
The object will remain with a uniform rectilinear movement when the external force does not act on it.
Density = (mass) / (volume)
4,000 kg/m³ = (mass) / (0.09 m³)
Multiply each side
by 0.09 m³ : (4,000 kg/m³) x (0.09 m³) = mass
mass = 360 kg .
Force of gravity = (mass) x (acceleration of gravity)
= (360 kg) x (9.8 m/s²)
= (360 x 9.8) kg-m/s²
= 3,528 newtons .
That's the force of gravity on this block, and it doesn't matter
what else is around it. It could be in a box on the shelf or at
the bottom of a swimming pool . . . it's weight is 3,528 newtons
(about 793.7 pounds).
Now, it won't seem that heavy when it's in the water, because
there's another force acting on it in the upward direction, against
gravity. That's the buoyant force due to the displaced water.
The block is displacing 0.09 m³ of water. Water has 1,000 kg of
mass in a m³, so the block displaces 90 kg of water. The weight
of that water is (90) x (9.8) = 882 newtons (about 198.4 pounds),
and that force tries to hold the block up, against gravity.
So while it's in the water, the block seems to weigh
(3,528 - 882) = 2,646 newtons (about 595.2 pounds) .
But again ... it's not correct to call that the "force of gravity acting
on the block in water". The force of gravity doesn't change, but
there's another force, working against gravity, in the water.
Answer:
Explanation:
This is a problem based on time dilation , a theory given by Albert Einstein .
The formula of time dilation is as follows .
t₁ = 
t is time measured on the earth and t₁ is time measured by man on ship .
A ) Given t = 20 years , t₁ = ? v = .4c

=1.09 x 20
t₁= 21.82 years
B ) Given t = 5 years , t₁ = ? v = .2c

=1.02 x 5
t₁= 5.1 years
C ) Given t = 10 years , t₁ = ? v = .8c

=1.67 x 10
t₁= 16.7 years
D ) Given t = 10 years , t₁ = ? v = .4c

=1.09 x 10
t₁= 10.9 years
E ) Given t = 20 years , t₁ = ? v = .8c

=1.67 x 20
t₁= 33.4 years
Answer: holding the ball in the air without moving it
Explanation:
When the ball goes up it’s potential energy
Explanation:
ummm I believe it's frequency