1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natita [175]
3 years ago
14

A physics teacher performing an outdoor demonstration suddenly falls from rest off a high cliff and simultaneously shouts "Help.

" When she has fallen for 3.0 s, she hears the echo of her shout from the valley floor below. The speed of sound is 340 m/s. (a) How tall is the cliff? (b) If we ignore air resistance, how fast will she be moving just before she hits the ground? (Her actual speed will be less than this, due to air resistance.)
Physics
1 answer:
uranmaximum [27]3 years ago
5 0

Answer:

532.0725 m

102.17270893 m/s

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

g = Acceleration due to gravity = 9.81 m/s² = g

H = Height of cliff

Distance traveled in 3 seconds

s=ut+\dfrac{1}{2}at^2\\\Rightarrow s=0\times t+\dfrac{1}{2}\times 9.81\times 3^2\\\Rightarrow s=44.145\ m

Distance traveled by sound = 2H-44.145 m

2H-44.145=ut+\dfrac{1}{2}at^2\\\Rightarrow 2H-44.145=340\times 3\\\Rightarrow H=\dfrac{340\times 3+44.145}{2}\\\Rightarrow H=532.0725\ m

The height of the cliff is 532.0725 m

v^2-u^2=2as\\\Rightarrow v=\sqrt{2as+u^2}\\\Rightarrow v=\sqrt{2\times 9.81\times 532.0725+0^2}\\\Rightarrow v=102.17270893\ m/s

Her speed just before she hits the ground is 102.17270893 m/s

You might be interested in
Find the energy in Joules required to lift a 55.0 Megagram object a distance of 500 cm.
fredd [130]

Energy to lift something =

               (mass of the object) x (gravity) x (height of the lift).

BUT ...

This simple formula only works if you use the right units.

Mass . . . kilograms
Gravity . . . meters/second²
Height . . . meters

For this question . . .

Mass = 55 megagram = 5.5 x 10⁷ grams = 5.5 x 10⁴ kilograms

Gravity (on Earth) = 9.8 m/second²

Height = 500 cm  =  5.0 meters

So we have ...

Energy = (5.5 x 10⁴ kilogram) x (9.8 m/s²) x (5 m)

            =  2,696,925 joules .

That's quite a large amount of energy ... equivalent to
straining at the rate of 1 horsepower for almost exactly an
hour, or burning a 100 watt light bulb for about 7-1/2 hours.

The reason is the large mass that's being lifted.
On Earth, that much mass weighs about 61 tons.

7 0
3 years ago
This is an electrical device that changes the voltage of electricity through the use of two set of coils
Fynjy0 [20]
Voltmeter is the right answer
3 0
3 years ago
Read 2 more answers
The two masses in the Atwood's machine shown in the figure are initially at rest at the same height. After they are released, th
Inga [223]

According to the description given in the photo, the attached figure represents the problem graphically for the Atwood machine.

To solve this problem we must apply the concept related to the conservation of energy theorem.

PART A ) For energy conservation the initial kinetic and potential energy will be the same as the final kinetic and potential energy, so

E_i = E_f

0 = \frac{1}{2} (m_1+m_2)v_f^2-m_2gh+m_1gh

v_f = \sqrt{2gh(\frac{m_2-m_1}{m_1+m_2})}

PART B) Replacing the values given as,

h= 1.7m\\m_1 = 3.5kg\\m_2 = 4.3kg \\g = 9.8m/s^2 \\

v_f = \sqrt{2gh(\frac{m_2-m_1}{m_1+m_2})}

v_f = \sqrt{2(9.8)(1.7)(\frac{4.3-3.5}{3.5+4.3})}

v_f = 1.8486m/s

Therefore the speed of the masses would be 1.8486m/s

6 0
3 years ago
To turn a coil of wire into a magnet, run a(n) ____ through it.
evablogger [386]

A.) Electromagnetic Current

please mark me as the brainliest

7 0
4 years ago
Read 2 more answers
Two ropes have equal length and are stretched the same way. The speed of a pulse on rope 1 is 1.4 times the speed on rope 2. Par
kondor19780726 [428]

Answer:

m1/m2 = 0.51

Explanation:

First to all, let's gather the data. We know that both rods, have the same length. Now, the expression to use here is the following:

V = √F/u

This is the equation that describes the relation between speed of a pulse and a force exerted on it.

the value of "u" is:

u = m/L

Where m is the mass of the rod, and L the length.

Now, for the rod 1:

V1 = √F/u1 (1)

rod 2:

V2 = √F/u2 (2)

Now, let's express V1 in function of V2, because we know that V1 is 1.4 times the speed of rod 2, so, V1 = 1.4V2. Replacing in the equation (1) we have:

1.4V2 = √F/u1 (3)

Replacing (2) in (3):

1.4(√F/u2) = √F/u1 (4)

Now, let's solve the equation 4:

[1.4(√F/u2)]² = F/u1

1.96(F/u2) =F/u1

1.96F = F*u2/u1

1.96 = u2/u1 (5)

Now, replacing the expression of u into (5) we have the following:

1.96 = m2/L / m1/L

1.96 = m2/m1 (6)

But we need m1/m2 so:

1.96m1 = m2

m1/m2 = 1/1.96

m1/m2 = 0.51

5 0
4 years ago
Other questions:
  • If a wheel falls from an airplane that is flying horizontally at an altitude of 500 m, how long will it take for the wheel to st
    14·1 answer
  • The same force is applied to two skateboards. One rolls across the room and the other moves a few feet and comes to a stop. Wher
    10·2 answers
  • All of the following are ways in which sedimentary rocks form EXCEPT
    11·1 answer
  • Suppose you put in 100 j of work on a lever and get out 93 j of work. what is the efficiency of the lever and how much of the wo
    14·1 answer
  • Which of the following are examples of projectile motion?
    10·2 answers
  • How does a rollercoaster convert potential energy into kinetic energy and then back to potential energy again and again?
    11·1 answer
  • Pls help, me, i nees to submit now
    13·1 answer
  • Suppose a ball with mass M hangs vertically from a spring with stiffness k and relaxed length L0. At what length Leq will the ba
    12·1 answer
  • It is easier to overcome load when the load is shifted towards the wheel in a wheelbarrow why ? give reason​
    6·2 answers
  • 10 basic rules of badminton?​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!