Answer:
a) V = - x ( σ / 2ε₀)
c) parallel to the flat sheet of paper
Explanation:
a) For this exercise we use the relationship between the electric field and the electric potential
V = - ∫ E . dx (1)
for which we need the electric field of the sheet of paper, for this we use Gauss's law. Let us use as a Gaussian surface a cylinder with faces parallel to the sheet
Ф = ∫ E . dA =
/ε₀
the electric field lines are perpendicular to the sheet, therefore they are parallel to the normal of the area, which reduces the scalar product to the algebraic product
E A = q_{int} /ε₀
area let's use the concept of density
σ = q_{int}/ A
q_{int} = σ A
E = σ /ε₀
as the leaf emits bonnet towards both sides, for only one side the field must be
E = σ / 2ε₀
we substitute in equation 1 and integrate
V = - σ x / 2ε₀
V = - x ( σ / 2ε₀)
if the area of the sheeta is 100 cm² = 10⁻² m²
V = - x (10⁻²/(2 8.85 10⁻¹²) = - x ( 5.6 10⁻¹⁰)
x = 1 cm V = -1 V
x = 2cm V = -2 V
This value is relative to the loaded sheet if we combine our reference system the values are inverted
V ’= V (inf) - V
x = 1 V = 5
x = 2 V = 4
x = 3 V = 3
These surfaces are perpendicular to the electric field lines, so they are parallel to the sheet.
In the attachment we can see a schematic representation of the equipotential surfaces
b) From the equation we can see that the equipotential surfaces are parallel to the sheet and equally spaced
c) parallel to the flat sheet of paper
Answer:
I would think a vector but double check that before turning it in
Explanation:
Because electrons are the only piece of the atom that is outside of the nucleus. the protons and neutrons are inside the nucleus.
then also the electrons itself have the charge to begin with
Answer:
parasites are creatures the gain benefit off of other animals usually harming them eg:ticks on dogs
Answer: "One object speeds up before it slows to a stop
"
(the top one)
Explanation:
Ok, first a little recall on how to read this type of graph.
If the points are far apart, the object is moving fast.
If the points are close together, the object is moving slow.
If the distance between the points changes then the velocity of the object changes, which means that the object is accelerated.
If we have a lot of points clustered in one location, then the object is not moving.
We can see:
The top object starts slow, then it increments the speed, then it slows down again, and then it comes to stop.
The bottom object starts fast, and it slows down.
then:
"One object speeds up before it slows to a stop
"
This describes the motion of the top object, this is the only correct option that describes one of the graphs.