Answer:
the answer is slows and greater
Hopes it helps!
Well, that's a nice, concise description, but it applies to a
generator, not a motor. A motor does exactly the opposite.
It uses an electric current to produce motion in a magnetic field.
Sadly, the statement is false.
Answer:
The force required to begin to lift the pole from the end 'A' is 240 N
Explanation:
The given parameters for the pole AB are;
The length of the pole, l = 10.0 m
The weight of the pole, W = 600 N ↓
The distance of the center of gravity of the pole from the side 'A' = 4.0 m
Let '' represent the force required to begin to lift the pole from the end 'A' and let a force applied in the upwards direction be positive
For equilibrium, the sum of moment about the point 'B' = 0, therefore, taking moment about 'B', we have
× 10.0 m - W × 4.0 m = 0
∴ × 10.0 m = W × 4.0 m = 600 N × 4.0 m
× 10.0 m = 600 N × 4.0 m
∴ = 600 N × 4.0 m/(10.0 m) = 240 N
The force required to begin to lift the pole from the end 'A', = 240 N.