Answer:
Hey shaikaadil700 !
<u> </u><u>Lubricating</u><u> </u> of rough surfaces reduces friction.
Explanation:
• Lubricating is the smoothening or polishing of the surfaces

Explanation:
Solar technologies convert sunlight into electrical energy either through photovoltaic (PV) panels or through mirrors that concentrate solar radiation. This energy can be used to generate electricity or be stored in batteries or thermal storage.
La longitud <em>final</em> del puente de acero es 100.018 metros.
Asumamos que la dilatación <em>térmica</em> experimentada por el puente de acero es <em>pequeña</em>, de modo que podemos emplear la siguiente aproximación <em>lineal</em> para determinar la longitud <em>final</em> del puente de acero (
), en metros:
(1)
Donde:
- Longitud inicial del puente, en metros.
- Coeficiente de dilatación, sin unidad.
- Temperatura inicial, en grados Celsius.
- Temperatura final, en grados Celsius.
Si tenemos que
,
,
y
, entonces la longitud final del puente de acero es:
![L = (100\,m)\cdot [1+(11.5\times 10^{-6})\cdot (24\,^{\circ}C - 8\,^{\circ}C)]](https://tex.z-dn.net/?f=L%20%3D%20%28100%5C%2Cm%29%5Ccdot%20%5B1%2B%2811.5%5Ctimes%2010%5E%7B-6%7D%29%5Ccdot%20%2824%5C%2C%5E%7B%5Ccirc%7DC%20-%208%5C%2C%5E%7B%5Ccirc%7DC%29%5D)

La longitud <em>final</em> del puente de acero es 100.018 metros.
Para aprender más sobre dilatación térmica, invitamos cordialmente a ver esta pregunta verificada: brainly.com/question/24953416
Answer:
the answer to this question perhaps is service
We will apply the conservation of linear momentum to answer this question.
Whenever there is an interaction between any number of objects, the total momentum before is the same as the total momentum after. For simplicity's sake we mostly use this equation to keep track of the momenta of two objects before and after a collision:
m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'
Note that v₁ and v₁' is the velocity of m₁ before and after the collision.
Let's choose m₁ and v₁ to represent the bullet's mass and velocity.
m₂ and v₂ represents the wood block's mass and velocity.
The bullet and wood will stick together after the collision, so their final velocities will be the same. v₁' = v₂'. We can simplify the equation by replacing these terms with a single term v'
m₁v₁ + m₂v₂ = m₁v' + m₂v'
m₁v₁ + m₂v₂ = (m₁+m₂)v'
Let's assume the wood block is initially at rest, so v₂ is 0. We can use this to further simplify the equation.
m₁v₁ = (m₁+m₂)v'
Here are the given values:
m₁ = 0.005kg
v₁ = 500m/s
m₂ = 5kg
Plug in the values and solve for v'
0.005×500 = (0.005+5)v'
v' = 0.4995m/s
v' ≅ 0.5m/s