Answer:

Explanation:
m = Mass of water = 749511.5 kg
c = Specific heat of water = 4182 J/kg ⋅°C
= Change in temperature = 
Cost of 1 GJ of energy = $2.844
Heat required is given by

Amount of heat required to heat the water is
.
Cost of heating the water is
Cost of heating the water to the required temperature is
.
Answer:
The original length of the specimen 
Explanation:
Original diameter
= 30 mm
Final diameter
= 30.04 mm
Change in diameter Δd = 0.04 mm
Final length
= 105.20 mm
Elastic modulus E = 65.5 G pa = 65.5 ×
M pa
Shear modulus G = 25.4 G pa = 25.4 ×
M pa
We know that the relation between the shear modulus & elastic modulus is given by



This is the value of possion's ratio.
We know that the possion's ratio is given by


0.00476

Final length
= 105.2 m
Original length


This is the original length of the specimen.
Timber frame construction uses timber studs and rails, together with a structural sheathing board, to form a structural frame that transmits all vertical and horizontal loads to the foundations.
Answer:
A) 282.34 - j 12.08 Ω
B) 0.0266 + j 0.621 / unit
C)
A = 0.812 < 1.09° per unit
B = 164.6 < 85.42°Ω
C = 2.061 * 10^-3 < 90.32° s
D = 0.812 < 1.09° per unit
Explanation:
Given data :
Z ( impedance ) = 0.03 i + j 0.35 Ω/km
positive sequence shunt admittance ( Y ) = j4.4*10^-6 S/km
A) calculate Zc
Zc =
=
=
= 282.6 < -2.45°
hence Zc = 282.34 - j 12.08 Ω
B) Calculate gl
gl =
d = 500
z = 0.03 i + j 0.35
y = j4.4*10^-6 S/km
gl = 
= 
= 0.622 < 87.55 °
gl = 0.0266 + j 0.621 / unit
C) exact ABCD parameters for this line
A = cos h (gl) . per unit = 0.812 < 1.09° per unit ( as calculated )
B = Zc sin h (gl) Ω = 164.6 < 85.42°Ω ( as calculated )
C = 1/Zc sin h (gl) s = 2.061 * 10^-3 < 90.32° s ( as calculated )
D = cos h (gl) . per unit = 0.812 < 1.09° per unit ( as calculated )
where : cos h (gl) = 
sin h (gl) = 