1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svp [43]
3 years ago
9

2. The block is released from rest at the position shown, figure 1. The coefficient of

Engineering
1 answer:
denis23 [38]3 years ago
5 0

Answer:

Velocity = 4.73 m/s.

Explanation:

Work done by friction is;

W_f = frictional force × displacement

So; W_f = Ff * Δs = (μF_n)*Δs

where; magnitude of the normal force F_n is equal to the component of the weight perpendicular to the ramp i.e; F_n = mg*cos 24

Over the distance ab, Potential Energy change mgΔh transforms into a change in Kinetic energy and the work of friction, so;

mg(3 sin 24) = ΔKE1 + (0.22)*(mg cos 24) *(3).

Similarly, Over the distance bc, potential energy mg(2 sin 24) transforms to;

ΔKE2 + (0.16)(mg cos 24)(2).

Plugging in the relevant values, we have;

1.22mg = ΔKE1 + 0.603mg

ΔKE1 = 1.22mg - 0.603mg

ΔKE1 = 0.617mg

Also,

0.813mg = ΔKE2 + 0.292mg

ΔKE2 = 0.813mg - 0.292mg

ΔKE2 = 0.521mg

Now total increase in Kinetic Energy is ΔKE1 + ΔKE2

Thus,

Total increase in kinetic energy = 0.617mg + 0.521m = 1.138mg

Putting 9.81 for g to give;

Total increase in kinetic energy = 11.164m

Finally, if v = 0 m/s at point a, then at point c, KE = ½mv² = 11.164m

m cancels out to give; ½v² = 11.164

v² = 2 × 11.164

v² = 22.328

v = √22.328

v = 4.73 m/s.

You might be interested in
Which of the following activities will allow an engineer to determine that a building's design is sound?
zhannawk [14.2K]
Please add more details because I don’t know if you are using a book or passage, therefore I cannot help you unless you add more detail
3 0
3 years ago
A steam power plant operates on an ideal reheat- regenerative Rankine cycle and has a net power output of 80 MW. Steam enters th
trasher [3.6K]

Answer:

flow(m) = 54.45 kg/s

thermal efficiency u = 44.48%

Explanation:

Given:

- P_1 = P_8 = 10 KPa

- P_2 = P_3 = P_6 = P_7 = 800 KPa

- P_4 = P_5 = 10,000 KPa

- T_5 = 550 C

- T_7 = 500 C

- Power Output P = 80 MW

Find:

-  The mass flow rate of steam through the boiler

-  The thermal efficiency of the cycle.

Solution:

State 1:

P_1 = 10 KPa , saturated liquid

h_1 = 192 KJ/kg

v_1 = 0.00101 m^3 / kg

State 2:

P_2 = 800 KPa , constant volume process work done:

h_2 = h_1 + v_1 * ( P_2 - P_1)

h_2 = 192 + 0.00101*(790) = 192.80 KJ/kg

State 3:

P_3 = 800 KPa , saturated liquid

h_3 = 721 KJ/kg

v_3 = 0.00111 m^3 / kg

State 4:

P_4 = 10,000 KPa , constant volume process work done:

h_4 = h_3 + v_3 * ( P_4 - P_3)

h_4 = 721 + 0.00111*(9200) = 731.21 KJ/kg

State 5:

P_5 = 10,000 KPa , T_5 = 550 C

h_5 = 3500 KJ/kg

s_5 = 6.760 KJ/kgK

State 6:

P_6 = 800 KPa , s_5 = s_6 = 6.760 KJ/kgK

h_6 = 2810 KJ/kg

State 7:

P_7 = 800 KPa , T_7 = 500 C

h_7 = 3480 KJ/kg

s_7 = 7.870 KJ/kgK

State 8:

P_8 = 10 KPa , s_8 = s_7 = 7.870 KJ/kgK

h_8 = 2490 KJ/kg

- Fraction of steam y = flow(m_6 / m_3).

- Use energy balance of steam bleed and cold feed-water:

                                        E_6 + E_2 = E_3

               flow(m_6)*h_6 + flow(m_2)*h_3 = flow(m_3)*h_3

                                    y*h_6 + (1-y)*h_3 = h_3

                                  y*2810 + (1-y)*192.8 = 721

Compute y:                          y = 0.2018

- Heat produced by the boiler q_b:

                             q_b = h_5 - h_4 +(1-y)*(h_7 - h_8)

                    q_b = 3500 -731.21 + ( 1 - 0.2018)*(3480 - 2810)

Compute q_b:               q_b = 3303.58 KJ/ kg

-Heat dissipated by the condenser q_c:

                                       q_c = (1-y)*(h_8 - h_1)

                                 q_c= ( 1 + 0.2018)*(2810 - 192)

Compute q_c:               q_c = 1834.26 KJ/ kg

- Net power output w_net:

                                     w_net = q_b - q_c

                                w_net = 3303.58 - 1834.26

                                    w_net = 1469.32 KJ/kg

- Given out put P = 80,000 KW

                                     flow(m) = P / w_net

compute flow(m)          flow(m) = 80,000 /1469.32 = 54.45 kg/s

- Thermal efficiency u:

                                     u = 1 - (q_c / q_b)

                                     u = 1 - (1834.26/3303.58)

                                     u = 44.48 %

5 0
3 years ago
Make two lists of applications of matrices, one for those that require jagged matrices and one for those that require rectangula
Agata [3.3K]

Answer:

Explanation:

You can utilize barbed clusters to store inadequate grids. On the off chance that there are a great many lines yet each line has just 4 or 5 associations with different segments, at that point as opposed to utilizing a 1000x1000 cluster you can utilize a 1000 line rough exhibit while you simply store the components that the present section has association with another segment. Other utilization can be done on account of query tables. Query tables will be tables which have different qualities concerning a solitary key where the quantity of qualities isn't fixed. Aside from this, barbed clusters have an exceptionally set number of utilization cases. Multidimensional exhibits then again have plenty of utilizations. It is utilized to store a great deal of information reliably on the grounds that the greater part of the information is put away is steady concerning which section compares to what information. Aside from that it very well may be utilized to make thick diagrams or sparse(not effective), plotting information. Another utilization case would be used as an impermanent stockpiling for the figurings that need to tail them and utilize the past information like in powerful programming.

3 0
3 years ago
An aircraft is flying at 300 mph true airspeed has a 50 mph tailwind. What is its ground speed?
Free_Kalibri [48]

Answer:

304.13 mph

Explanation:

Data provided in the question :

The Speed of the flying aircraft = 300 mph

Tailwind of the true airspeed = 50 mph

Now,

The ground speed will be calculated as:

ground speed = \sqrt{300^2+50^2}

or

The ground speed = \sqrt{92500}

or

The ground speed = 304.13 mph

Hence, the ground speed is 304.13 mph

8 0
3 years ago
Damien wants to study the effect on materials let 60 after it is submerged in water for varying durations what type of graphical
Crank

Answer:

please help you are not the intended recipient

7 0
3 years ago
Other questions:
  • Is the ASUS ROG Strix B450-F Gaming amd ryzen 5 3600 ready?
    7·2 answers
  • Please answer the following questions.
    9·2 answers
  • .........................................
    11·1 answer
  • The Torricelli's theorem states that the (velocity—pressure-density) of liquid flowing out of an orifice is proportional to the
    5·1 answer
  • Is the gap store an example of commercial construction? Yes or no
    10·1 answer
  • Select the correct text in the passage.
    6·2 answers
  • What does an engineer do? List as many types of engineers as you can.
    9·1 answer
  • Plssssssssssssss Alexi is writing a program which prompts users to enter their age. Which function should she use?
    5·1 answer
  • Outline how effective brainstorming should be set up so that it does not go off-track or alienate anyone.
    15·1 answer
  • When converting liquid level units to sensor output signal units, you should first convert the liquid level units to _____ units
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!