The fastest way to find the missing endpoint is to determine from the known endpoint to the midpoint and then performing the same transformation on the midpoint.
I'm going to try to let you answer this yourself so you can learn for yourself ok. :3
Answer:
Step-by-step explanation:
Subtract first from second
= 2x^2 + 3x + 5
^ 3 sqrt 750 + ^ 3 sqrt 2058 - ^ 3 sqrt 48
Rewriting the expression we have
^ 3 sqrt (6 * x ^ 3) + ^ 3 sqrt (6 * y ^ 3) - ^ 3 sqrt (6 * z ^ 3)
That is, we have the following equations:
6 * x ^ 3 = 750
6 * y ^ 3 = 2058
6 * z ^ 3 = 48
Clearing x, y and z we have:
x = 5
y = 7
z = 2
Then, rewriting the expression
x (^ 3 sqrt (6)) + y (^ 3 sqrt (6)) - z (^ 3 sqrt (6))
Substituting the values
5 (^ 3 sqrt (6)) + 7 (^ 3 sqrt (6 *)) - 2 (^ 3 sqrt (6))
10 (^ 3 sqrt (6))
answer
the simple form of the expression is
D) 10 ^ 3 sqrt 6
Hi there!

Let there be two angles, ∠A and ∠B, that are supplementary to each other. Therefore:
∠A + ∠B = 180°
We can assign ∠B to be the greater angle. Assume ∠A has a measure of x°.
∠A = x°
∠B = x° + 30°
The sum is equal to 180°, so:
x° + (x° + 30°) = 180°
Solve for x°.
2x° + 30° = 180°
2x° = 150°
x° = 75°
Thus, ∠A = 75°.
Since ∠B is 30°, greater:
∠B = 75° + 30° = 105°.
Answer:
x = 13
Step-by-step explanation:
No se exactamente como decir esto porque yo ayudo la majoria de los usuario en ingles pero hay que usar un método para describir a x
Un método que se llama Pythagorean theorem
Pythagorean theorem: a^2 + b^2 = c^2 donde a^2 = 5 b^2 = 12 y c^2 = x
Entonces…
5^2 + 12^2 = c^2
Nota: podemos ver que esto esta bien porque el sum de los dos lados suma el mas largo.
Ahora
25 + 144 = c^2
c^2 = 169
Pero eso no puede ser la respuesta porque no tiene sentido a que x sea un lado que mide 169 entonces tenemos que usar sqrt rt
sqrt rt de 169 = 13
x = 13