1. If we increase the distance to twice it's original value, the light intensity is reduced by one-fourth, the light intensity would be:
I0/4
2. rms magnetic field is inversely proportional to distance, so the new rms magnetic field would be:
B0/2
3. average energy density is inversely proportional to the square of the distance, so the new average energy density is:
E0/4
So that there isn't too much force restricting the structure of the circus and cause disaster
Answer:
By pushing the pendulum Bob up so it moves faster
Explanation:
In pendulum physics the length of the pendulum Bob determines the speed of the clock. So since the grandfather's clock is slow it means the Bob is has moved down so to move it up you have to achieve this by adjusting the but upwards thereby making the clock move faster.
INDUCTION MOTOR:-
Speed:-Less speed range than PMAC motors • Speed range is a function of the drive being used — to 1,000:1 with an encoder, 120:1 under field-oriented control
Reliability:-Waste heat is capable of degrading insulation essential to motor operation • Years of service common with proper operation
Power density:-Induction produced by squirrel cage rotor inherently limits power density
Accuracy:-Flux vector and field-oriented control allows for some of accuracy of servos
Cost:-Relatively modest initial cost; higher operating costs
PERMANENT MAGNET MORTOR:-
speed:-VFD-driven PMAC motors can be used in nearly all induction-motor and some servo applications • Typical servomotor application speed — to 10,000 rpm — is out of PMAC motor range
Reliability:-Lower operating temperatures reduces wear and tear, maintenance • Extends bearing and insulation life • Robust construction for years of trouble-free operation in harsh environments.
power density:-Rare-earth permanent magnets produce more flux (and resultant torque) for their physical size than induction types.
Accuracy:-Without feedback, can be difficult to locate and position to the pinpoint accuracy of servomotors
<span>Cost:-Exhibit higher efficiency, so their energy use is smaller and full return on their initial purchase cost is realized more quickly</span>
Answer:
u= 200 m/s
Explanation:
Given that
Mass of bullet ,m= 50 gm
Assume that mass of block ,M= 1.2 kg
Lets take speed of the bullet before collision = u m/s
The speed of the system after collision ,v= 8 m/s
There is no any external force ,that is why linear momentum of the system will be conserve.
Linear momentum ,P = mass x velocity
m u = (M+m)v
0.05 x u = (1.2 + 0.05 ) x 8
u= 200 m/s
Therefore the speed of the bullet just before the collision is 200 m/s.