1.) Pitch
2.)Wavelength
3.)Density/Elastic Properties-b. Two of the above
4.)Liquids
5.) I'm not sure but I'm pretty sure it's the Doppler effect
6.) Frequency Increases
Answer:
The maximum height reached by the water is 117.55 m.
Explanation:
Given;
initial velocity of the water, u = 48 m/s
at maximum height the final velocity will be zero, v = 0
the water is going upwards, i.e in the negative direction of gravity, g = -9.8 m/s².
The maximum height reached by the water is calculated as follows;
v² = u² + 2gh
where;
h is the maximum height reached by the water
0 = u² + 2gh
0 = (48)² + ( 2 x -9.8 x h)
0 = 2304 - 19.6h
19.6h = 2304
h = 2304 / 19.6
h = 117.55 m
Therefore, the maximum height reached by the water is 117.55 m.
To solve this exercise it is necessary to apply the concepts related to Centripetal and Perimeter acceleration of a circle.
The perimeter of a circle is defined by

Where,
r= radius
While centripetal acceleration is defined by

Where,
v= velocity
r= radius
PART A)
The distance of a body can be defined based on the speed and the time traveled, that is
x = v*t
For our values the distance is equal to
x = 15*115=1725m
The plane when going to make the turn from east to south makes a quarter of the circumference that is

The same route you take is the distance traveled, that is




PART B)
With the radius is possible calculate he centripetal acceleration,



Therefore the radius of the curva that the plane follows in making the turn is 1098.17m with a centripetal acceleration of 
Answer:
Acid rain is caused by a chemical reaction that begins when compounds like sulfur dioxide and nitrogen oxides are released into the air. These substances can rise very high into the atmosphere, where they mix and react with water, oxygen, and other chemicals to form more acidic pollutants, known as acid rain.