How To:
How do you add two vectors?
To add or subtract two vectors, add or subtract the corresponding components. Let →u=⟨u1,u2⟩ and →v=⟨v1,v2⟩ be two vectors. The sum of two or more vectors is called the resultant. The resultant of two vectors can be found using either the parallelogram method or the triangle method .
Answer:
Explanation:
Expression for time period of pendulum is given as follows
![T=2\pi\sqrt{\frac{l}{g} }](https://tex.z-dn.net/?f=T%3D2%5Cpi%5Csqrt%7B%5Cfrac%7Bl%7D%7Bg%7D%20%7D)
where l is length of pendulum and g is acceleration due to gravity .
Putting the given values for first place
![2.67=2\pi\sqrt{\frac{l}{9.77} }](https://tex.z-dn.net/?f=2.67%3D2%5Cpi%5Csqrt%7B%5Cfrac%7Bl%7D%7B9.77%7D%20%7D)
Putting the values for second place
![T=2\pi\sqrt{\frac{l}{9.81} }](https://tex.z-dn.net/?f=T%3D2%5Cpi%5Csqrt%7B%5Cfrac%7Bl%7D%7B9.81%7D%20%7D)
Dividing these two equation
![\frac{T}{2.67} =\sqrt{\frac{9.77}{9.81} }](https://tex.z-dn.net/?f=%5Cfrac%7BT%7D%7B2.67%7D%20%3D%5Csqrt%7B%5Cfrac%7B9.77%7D%7B9.81%7D%20%7D)
T = 2.66455 s.
Answer:
$364.29
Explanation:
given,
Packing of crates per month (u)= 800
annual carrying cost of 35 percent of the purchase price per crate.
Ordering cost(S) = $ 28
D = 800 x 12 = 9600 crates/year
H = 0.35 P
H = 0.35 x $10
H = $3.50/crate per yr.
Present Total cost
= ![\dfrac{800}{2}\times 3.50 + \dfrac{9600}{800}\times 28](https://tex.z-dn.net/?f=%5Cdfrac%7B800%7D%7B2%7D%5Ctimes%203.50%20%2B%20%5Cdfrac%7B9600%7D%7B800%7D%5Ctimes%2028)
= 1400 + 336
= $ 1,736
![Q_0 = \sqrt{\dfrac{2DS}{H}}](https://tex.z-dn.net/?f=Q_0%20%3D%20%5Csqrt%7B%5Cdfrac%7B2DS%7D%7BH%7D%7D)
![Q_0 = \sqrt{\dfrac{2\times 9600 \times 28}{3.50}}](https://tex.z-dn.net/?f=Q_0%20%3D%20%5Csqrt%7B%5Cdfrac%7B2%5Ctimes%209600%20%5Ctimes%2028%7D%7B3.50%7D%7D)
![Q_0 =\$ 391.92](https://tex.z-dn.net/?f=Q_0%20%3D%5C%24%20391.92)
Total cost at EOQ
= ![\dfrac{391.92}{2}\times 3.50 + \dfrac{9600}{391.92}\times 28](https://tex.z-dn.net/?f=%5Cdfrac%7B391.92%7D%7B2%7D%5Ctimes%203.50%20%2B%20%5Cdfrac%7B9600%7D%7B391.92%7D%5Ctimes%2028)
= 685.86 + 685.85
= $ 1,371.71
the firm save annually in ordering and carrying costs by using the EOQ
= $ 1,736 - $ 1,371.71
= $364.29