If the temperature is increased then reaction will shift to the left because heat is absorbed.
<h3>What is equilibrium state?</h3>
Equilibrium of any reaction is that state in which concentration of reactant and concentration of product will be constant.
Given chemical reaction is:
A(g) + 2B(g) ⇄ C(g) + D(g)
From the equilibrium state reaction will move only that side which will contribute to maintain the stable state. In the forward reaction heat is released as mention in the question. So, when the temperature of reaction is increased then it shifts towards the left side by absorbing the heat and maintain the stability.
Hence, option (2) is correct, i.e. It will shift to the left because heat is absorbed.
To know more about equilibrium, visit the below link:
brainly.com/question/14297698
Answer:
6.564×10¹⁶ fg.
Explanation:
The following data were obtained from the question:
Mass of beaker = 76.9 g
Mass of beaker + salt = 142.54 g
Mass of salt in fg =?
Next, we shall determine the mass of the salt in grams (g). This can be obtained as follow:
Mass of beaker = 76.9 g
Mass of beaker + salt = 142.54 g
Mass of salt =?
Mass of salt = (Mass of beaker + salt) – (Mass of beaker)
Mass of salt = 142.54 – 76.9
Mass of salt = 65.64 g
Finally, we shall convert 65.64 g to femtograms (fg) as illustrated below:
Recall:
1 g = 1×10¹⁵ fg
Therefore,
65.64 g = 65.64 g × 1×10¹⁵ fg / 1g
65.64 g = 6.564×10¹⁶ fg
Therefore, the mass of the salt is 6.564×10¹⁶ fg.
Answer:
Explanation:
use the equation
moles = mass/mr
=19.9/79.5
=0.250moles of CuO
then do the same for
H = 2.02/1
=2.02
so CuO is the limiting reagent because there is less amount of it.
Hope this helps :)