<h2>x > 9</h2>
Step-by-step explanation:
<h3><em>-</em><em>5</em><em> </em><em>(</em><em>x</em><em>-</em><em>1</em><em>)</em><em> </em><em>></em><em> </em><em>-</em><em>4</em><em>0</em></h3><h3><em>-</em><em>5</em><em>x</em><em> </em><em>+</em><em> </em><em>5</em><em> </em><em>></em><em> </em><em>-</em><em>4</em><em>0</em></h3><h3><em>-</em><em>5</em><em>x</em><em> </em><em>></em><em> </em><em>-</em><em>4</em><em>0</em><em> </em><em>-</em><em>5</em></h3><h3><em>-</em><em>5</em><em>x</em><em> </em><em>></em><em> </em><em>-</em><em>4</em><em>5</em></h3><h3><em>x</em><em> </em><em>></em><em> </em><em>-</em><em>4</em><em>5</em><em> </em><em>÷</em><em> </em><em>-</em><em>5</em></h3><h3><em>x</em><em> </em><em>></em><em> </em><em>9</em></h3>
<h2>MARK ME AS BRAINLIST</h2><h2>PLZ FOLLOW ME</h2>
Hi there.
The answer is g(0) = 3.
Explanation:
Given three functions with specified domains. The first and three functions both do not have x = 0 as a part of the domain. We can clear both functions.
Our main function then is currently —

You might be wondering how are we gonna find the x-value if there is no x-term?
That is to do nothing. If there is no x-term to substitute then we answer only the constant.

Please use the solution below:
Let P = perimeter, A = area
As provided above, a = xy and
We know that the formula to solve for the perimeter of a rectangle is P = 2x + 2y. Using the given 112m, we can solve the perimeter using the formula:
112 = 2x + 2y
56 = x + y
x = 56-y or y = 56-x
Let's solve the perimeter in terms of y using the formula below:
A = (56-y)(y)
Find the derivative of A = 56-y^2 to get the value of y.
dA/dy = 56-2y = 0
y = 56/2
y = 28
To find X, substitute the value of y in the equation x = 56 - y.
x = 56 - 28
Therefore, x = 28.
We can conclude that the figure is not a rectangle but a square.
50:
40 is 10 less than 50
60 is 10 more than 50
Answer:
False
Step-by-step explanation:
The triangles are similar because the angles are the same
We know nothing about the side lengths, so we can say nothing about concurrency. They may or may not be congruent.