I think it’s C
a, sugar can’t conduct electricity
b, you don’t want to conduct electricity with something wet
salt can be a conductor of electricity
Answer:
1.427x10^-3mol per L
Explanation:

I could use ⇌ in the math editor so I used ----
from the question each mole of Y(IO3)3 is dissolved and this is giving us a mole of Y3+ and a mole of IO3^3-
Ksp = [Y^3+][IO3-]^3
So that,
1.12x10^-10 = [S][3S]^3
such that
1.12x10^-10 = 27S^4
the value of s is 0.001427mol per L
= 1.427x10^-3mol per L
so in conclusion
the molar solubility is therefore 1.427x10^-3mol per L

Ethene react with oxygen at a
molar ratio:

Convert the quantity of each reactant supplied to number of moles of particles:
The question stated not whether both reactants were used up in this process. Thus start by testing the assumption that e.g., ethene was used up while some oxygen gas were left unreacted (ethene as the <em>limiting </em>reagent.) Under this assumption, the relative availability of the two species,
and
(as seen in the balanced chemical equation) shall satisfy the relationship

In other words,


Evaluating the expression
with data given in the question yields approximately
, which does satisfy the relationship. Hence the assumption holds and ethene is the limiting reactant.
The quantity of a reactant produced in a chemical reaction is related to its stoichiometric (of relating to proportions) relationship with the limiting reactant (or any of the reactants in case of more than one limiting reactant.) For this scenario, given the molar ratio
,


Answer:
Use less heat in your house.
Explanation:
You have blankets in your house, huddle up for a good movie together.
Evaporation happens<span> when atoms or </span>molecules<span> escape from the liquid and turn into a vapor. Not all of the </span>molecules in a liquid have the same energy. <span>Sometimes a </span>liquid<span> can be sitting in one place (maybe a puddle) and its molecules will become a </span>gas<span>. That's the process called </span>evaporation<span>. It can happen when liquids are cold or when they are warm. It happens more often with warmer liquids. You probably remember that when matter has a higher temperature, the molecules have a higher </span>energy<span>. When the energy in specific molecules reaches a certain level, they can have a </span>phase change<span>. Evaporation is all about the energy in individual molecules, not about the average energy of a system. The average energy can be low and the evaporation still continues. </span>