1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zina [86]
3 years ago
11

100 points! simplify write as a product compute

Mathematics
2 answers:
Rom4ik [11]3 years ago
3 0

Answer:

a) \sqrt{61 - 24 \sqrt{5} }  =  - 4  + 3 \sqrt{5}

b)( \sqrt{ ( {c}^{2}   -  1) ({b}^{2}    -  1) } - {2 \sqrt{bc} }) (\sqrt{ ( {c}^{2}   -  1) ({b}^{2}    -  1) }  + {2 \sqrt{bc}  } )

c) \frac{ \sqrt{9 - 4 \sqrt{5} } }{2 -  \sqrt{5} }  =   - 1

Step-by-step explanation:

We want to simplify

\sqrt{61 - 24 \sqrt{5} }

Let :

\sqrt{61 - 24 \sqrt{5} }  = a - b \sqrt{5}

Square both sides of the equation:

(\sqrt{61 - 24 \sqrt{5} } )^{2}  =  ({a - b \sqrt{5} })^{2}

Expand the RHS;

61 - 24 \sqrt{5} =  {a}^{2}  - 2ab \sqrt{5}  + 5 {b}^{2}

Compare coefficients on both sides:

{a}^{2}  + 5 {b}^{2}  = 61 -  -  - (1)

- 24 =  - 2ab \\ ab = 12 \\ b =  \frac{12}{b}  -  -  -( 2)

Solve the equations simultaneously,

\frac{144}{ {b}^{2} }  + 5 {b}^{2}  = 61

5 {b}^{4}  - 61 {b}^{2}  + 144 = 0

Solve the quadratic equation in b²

{b}^{2}  = 9 \: or \:  {b}^{2}  =  \frac{16}{5}

This implies that:

b =  \pm3 \: or \: b =  \pm  \frac{4 \sqrt{5} }{5}

When b=-3,

a =  - 4

Therefore

\sqrt{61 - 24 \sqrt{5} }  =  - 4  + 3 \sqrt{5}

We want to rewrite as a product:

{b}^{2}  {c}^{2}  - 4bc -  {b}^{2}  -  {c}^{2}  + 1

as a product:

We rearrange to get:

{b}^{2}  {c}^{2}   -  {b}^{2}  -  {c}^{2}  + 1- 4bc

We factor to get:

{b}^{2} ( {c}^{2}   -  1)  -  ({c}^{2}   -  1)- 4bc

Factor again to get;

( {c}^{2}   -  1) ({b}^{2}   -  1)- 4bc

We rewrite as difference of two squares:

(\sqrt{( {c}^{2}   -  1) ({b}^{2}   -  1) })^{2} - ( {2 \sqrt{bc} })^{2}

We factor the difference of square further to get;

( \sqrt{ ( {c}^{2}   -  1) ({b}^{2}    -  1) } - {2 \sqrt{bc} }) (\sqrt{ ( {c}^{2}   -  1) ({b}^{2}    -  1) }  + {2 \sqrt{bc}  } )

c) We want to compute:

\frac{ \sqrt{9 - 4 \sqrt{5} } }{2 -  \sqrt{5} }

Let the numerator,

\sqrt{9 - 4 \sqrt{5} }  = a - b \sqrt{5}

Square both sides of the equation;

9 - 4 \sqrt{5}  =  {a}^{2}  - 2ab \sqrt{5}  + 5 {b}^{2}

Compare coefficients in both equations;

{a}^{2}  + 5 {b}^{2}  = 9 -  -  - (1)

and

- 2ab =  - 4 \\ ab = 2 \\ a =  \frac{2}{b}  -  -  -  - (2)

Put equation (2) in (1) and solve;

\frac{4}{ {b}^{2} }  + 5 {b}^{2}  = 9

5 {b}^{4}   - 9 {b}^{2}  + 4 = 0

b =  \pm1

When b=-1, a=-2

This means that:

\sqrt{9 - 4 \sqrt{5} }  =  - 2 +  \sqrt{5}

This implies that:

\frac{ \sqrt{9 - 4 \sqrt{5} } }{2 -  \sqrt{5} }  =  \frac{ - 2 +  \sqrt{5} }{2 -  \sqrt{5} }  =  \frac{ - (2 -  \sqrt{5)} }{2 -  \sqrt{5} }  =  - 1

r-ruslan [8.4K]3 years ago
3 0

Answer:

a)

b)

c)

Step-by-step explanation:

We want to simplify

Let :

Square both sides of the equation:

Expand the RHS;

Compare coefficients on both sides:

Solve the equations simultaneously,

Solve the quadratic equation in b²

This implies that:

When b=-3,

Therefore

We want to rewrite as a product:

as a product:

We rearrange to get:

We factor to get:

Factor again to get;

We rewrite as difference of two squares:

We factor the difference of square further to get;

c) We want to compute:

Let the numerator,

Square both sides of the equation;

Compare coefficients in both equations;

and

Put equation (2) in (1) and solve;

When b=-1, a=-2

Answer:

a)

b)

c)

Step-by-step explanation:

We want to simplify

Let :

Square both sides of the equation:

Expand the RHS;

Compare coefficients on both sides:

Solve the equations simultaneously,

Solve the quadratic equation in b²

This implies that:

When b=-3,

Therefore

We want to rewrite as a product:

as a product:

We rearrange to get:

We factor to get:

Factor again to get;

We rewrite as difference of two squares:

We factor the difference of square further to get;

c) We want to compute:

Let the numerator,

Square both sides of the equation;

Compare coefficients in both equations;

and

Put equation (2) in (1) and solve;

When b=-1, a=-2

This means that:

This implies that:

Read more on Brainly.com - brainly.com/question/15165294#readmore

This means that:

This implies that:

Read more on Brainly.com - brainly.com/question/15165294#readmoreAnswer:

Step-by-step explanation:

You might be interested in
Althea paid $5.00 each for two bracelets and later sold each for $15.00. She paid $8.00 each for three bracelets
____ [38]

Answer:

I have the same question

Step-by-step explanation:

message me if anyone helps I need it too

8 0
3 years ago
Clarence saved 19% of the money he earned. If Clarence earned $90, how much did he save?
babunello [35]
He saved $17.1




Yes yes yes yes yes
8 0
3 years ago
What is the value of 25 - 3x when x = 7 * ?
astra-53 [7]

Answer:

4

Step-by-step explanation:

25 - 3(7) .... Plug in 7

25 - 21 .... Multiply 3 and 7

4 ..... Answer

Hope this helps!

7 0
3 years ago
The following magazines are in a rack at a doctor's office.
jeka57 [31]
Well that is 7/12 because she might pic the movie just because it seems more interesting it’s the first thing that well come up to a humans mind
5 0
3 years ago
Vihat is half of 7 minutes 24 seconds?
lara31 [8.8K]

Answer:

3 Minutes 42 Seconds

Step-by-step explanation:

Half of 7 minutes is 3 minutes and 30 seconds, half of 24 seconds is 12 seconds. If you add the halfed times together you get a total of 3 minutes 42 seconds.

7 0
2 years ago
Other questions:
  • Can someone help me answer these
    12·2 answers
  • HELP brainlest included 1 hours timed
    6·2 answers
  • I need someone to go out with me i am 18
    5·2 answers
  • For her geography project, Luthnie built a clay
    8·1 answer
  • Please help asap!!! Will give brainlist :)
    13·1 answer
  • A pancake recipe calls for 4 cups of flour and 3 cups of milk.Does a recipe calling for 2 cup of flour and 1.5 cups milk use the
    9·2 answers
  • Matt uses a compass and straightedge to construct parallel lines. Annie uses technology to construct parallel lines. In your own
    13·1 answer
  • A recipe that makes 8 jumbo blueberry muffins calls for 1.5 teaspoons of baking powder. How much baking powder is needed to make
    11·2 answers
  • Which of the functions below could have created this graph?
    8·1 answer
  • Find the gradient of 15y-6x=8
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!