The pH scale is used to measure the degree of acidity or alkalinity of a solution. The scale runs from 0 (very acidic solutions can have a negative pH) to 14 (very alkaline solutions can have a pH higher than this), while a neutral liquid such as pure water has a pH of 7. The pH is linked to the concentration of hydrogen ions (H +) in the solution. Diluting an acid or alkali affects the concentration of H +<span> ions in a solution and therefore affects the pH. In this activity, we will investigate how diluting an acid or alkali affects the pH.
Hope this helps:D
Have a great rest of a brainly day!</span>
Answer:
The correct option is: bent 109°
Explanation:
Covalent molecules are the molecules in which the atoms are linked by covalent bonds. The electrons involved in the formation of a covalent bond are known as shared pair or <u>bond pair of electrons</u>.
The three-dimensional arrangement of the atoms of a molecule in space is known its molecular structure or geometry.
<u>Given molecule</u>: XY₂, having two lone pairs around the central atom X.
Since the molecule XY₂ has <u>two lone pairs</u> and <u>two bond pairs</u> of electrons. Therefore according to the VSEPR theory, the given molecule has a <u>bent molecular geometry with 109° bond angle.</u>
As we know methane is an Alkane to separate an Alkane We use fractional distillation to put each liquid into its fraction with the right temperature group
Answer:
the value of molar absorptivity is 229000 
Explanation:
given data
phenol phthalein solution = 0.050 g
total volume = 100.0 ml
dilute = 100.0 ml
diluted sample = 0.18
solution
we get here concentration that is express as
concentration = ( mass of solute × 1000 ) ÷ ( molar mass of solute × volume of solution ) .............1
put here value
concentration =
concentration = 0.00157 M
and here dillution equation is express as
c1 × v1 = c2 × v2 .................2
here c1 and c2 is initial and final concentration
and v1 and v2 is initial and final volume
put here value
0.001571 × 0.050 = c2 × 100
c2 = 7.855 ×
M
and
now we get molar by absorbance equation that is
A = E × C × l ................3
here A is absorbance and E is molar and c is absorptivity and l is path length
put here value
0.18 = E × 7.855 ×
× 1
E = 229000 