Answer:
1) The limiting reactant is N₂ because it is present with the lower no. of moles than H₂.
2) The amount (in grams) of excess reactant H₂ = 4.39 g.
Explanation:
- Firstly, we should write the balanced equation of the reaction:
<em>N₂ + 3H₂ → 2NH₃.</em>
<em>1) To determine the limiting reactant of the reaction:</em>
- From the stichiometry of the balanced equation, 1.0 mole of N₂ reacts with 3.0 moles of H₂ to produce 2.0 moles of NH₃.
- This means that <em>N₂ reacts with H₂ with a ratio of (1:3).</em>
- We need to calculate the no. of moles (n) of N₂ (5.23 g) and H₂ (5.52 g) using the relation:<em> n = mass / molar mass.</em>
The no. of moles of N₂ in (5.23 g) = mass / molar mass = (5.23 g) / (28.00 g/mol) = 0.1868 mol.
The no. of moles of H₂ (5.52 g) = mass / molar mass = (5.52 g) / (2.015 g/mol) = 2.74 mol.
- From the stichiometry, N₂ reacts with H₂ with a ratio of (1:3).
The ratio of the reactants of N₂ (5.23 g, 0.1868 mol) to H₂ (5.52 g, 2.74 mol) is (1:14.67).
∴ The limiting reactant is N₂ because it is present with the lower no. of moles than H₂.
0.1868 mol of N₂ react completely with 0.5604 mol of H₂ and the remaining of H₂ is in excess.
<em>2) To determine the amount (in grams) of excess reactant of the reaction:</em>
- As showed in the part 1, The limiting reactant is N₂ because it is present with the lower no. of moles than H₂.
- Also, 0.1868 mol of N₂ react completely with 0.5604 mol of H₂ and the remaining of H₂ is in excess.
- The no. of moles are in excess of H₂ = 2.74 mol - 0.5604 mol (reacted with N₂) = 2.1796 mol.
- ∴ The amount (in grams) of excess reactant H₂ = n (excess moles) x molar mass = (2.1796 mol)((2.015 g/mol) = 4.39 g.
Answer:
9-10 ppm.
0.2-0.4 ppm.
Explanation:
The proton on the aldehyde group will appear at approximately 9-10 ppm whereas the methylene peak on the alcohol is the only peak 0.2-0.4 ppm for either compound. Aldehydes and aromatics are quite distinctive in the Nuclear magnetic resonance (NMR). Aldehydes show up from 9-10 ppm, usually as a small singlet; aromatic protons show up from 6.5-8.5 ppm. NMR spectroscopy is the use of NMR to study the physical, chemical, and biological properties of matter.
Answer:
energy flow and nutrient cycles ( photosynthesis , food webs, decomposition webs) sediment transport and soil formation. the water cycle. reproduction/ regeneration mechanisms.
The reaction for burning of charcoal or complete combustion is as follows:

From the above balanced reaction, 1 mole of carbon releases 1 mole of
gas.
Converting mass of charcoal into moles as follows:

Molar mass of pure carbon is 12 g/mol thus,

The same moles of
is released. Converting these moles into mass as follows:
m=n×M
Molar mass of
is 44 g/mol thus,

Converting mass into kg,

Thus, total mass of gas released is 5.5 kg.