Https://www.google.com/search?q=how+to+solve+fir+atomic+mass+in+chemisty&ie=UTF-8&oe=UTF-8&hl=en-us&client=safari#kpvalbx=1
Here is the link to a great video that explains your question nicely, hope this helps.
Answer:
The answer to your question is Argon
Explanation:
Electron configuration given 1s² 2s² 2p⁶ 3s² 3p⁶
To find the element whose electron configuration is given, we can do it by two methods.
Number 1. Sum all the exponents the result will give you the atomic number of the element.
2 + 2 + 6 + 2 + 6 = 18
The element with an atomic number of 18 is Argon.
Number 2. Look at the last terms of the electronic configuration
3s² 3p⁶
Number three indicates that this element is in the third period in the periodic table.
Sum the exponents 2 + 6 = 8
Number 8 indicates that this element is the number 8 of that period without considering the transition elements.
The element with these characteristics is Argon.
Answer:
A combination is certainly possible, but you should not take formal charges so literally
Normally, when a covalent bond is found, the two atoms both bring in one electron. As you identify correctly, in the case of nitric acid that would not be possible completely. If you draw the different possible resonance structures, the most likely structure has a single bond between the nitrogen and an oxygen where the oxygen has 3 lone pairs and both electrons in the bond are donated by the nitrogen. This makes the nitrogen "positive" and that oxygen "negative", but in fact the electrons move more freely in the molecule and charges are more distributed. You will not be able to find "the negatively charged" oxygen atom.
Explanation:
<h2>
<u>PLEASE</u><u> </u><u>MARK</u><u> ME</u><u> BRAINLIEST</u><u> AND</u><u> FOLLOW</u><u> M</u><u> E</u><u> LOTS</u><u> OF</u><u> LOVE</u><u> FROM</u><u> MY</u><u> HEART</u><u> AND</u><u> SOUL</u><u> DARLING</u><u> </u><u>TEJASWI </u><u> HERE</u><u> ❤️</u></h2>
Answer:
6.5 moles of Oxygen are required
Explanation:
Based on the reaction:
CH3OH + 1/2 O2 → CH2O + H2O
1 mole of methanol reacts with 1/2 moles O2 to produce 1 mole of formaldehyde and 1 mole of water.
Thus, to produe 13 moles of formaldehyde, CH2O, are needed:
13 moles CH2O * (1/2mol O2 / 1mol CH2O) =
<h3>6.5 moles of Oxygen are required</h3>