Answer:
The average angular acceleration is 
Explanation:
From the question we are told that
From the question we are told that
The length of the bat is
\
The initial linear velocity is 
The time is 
The velocity at t is 
Generally average angular acceleration is mathematically represented as

Where
is the finial angular velocity which is mathematically evaluated as



and
is the initial angular velocity which is zero since initial linear velocity is zero
So


Explanation:
Okay, well, Saturn's rings form a wide and complex system, consisting mostly of particles and pieces of ice, and are highly visible. They may have formed from one or more moons that broke up due to a collision, or are left over from early debris that never coalesced into a moon... And, The rings of Uranus are thin and hard to see, consisting mostly of chunks of carbon and hydrocarbons with very little reflectivity. They may also have formed from the breakup of a small moon due to a collision. They may be kept thin by the presence of shepherd moons.
Hope I helped !
:)
Answer:
The relationship is only between the coefficients A, E and J which is:
. The remaining coefficients can be anything without any constraints.
Explanation:
Given:
The three components of velocity is a velocity field are given as:

The fluid is incompressible.
We know that, for an incompressible fluid flow, the sum of the partial derivatives of each component relative to its direction is always 0. Therefore,

Now, let us find the partial derivative of each component.

Hence, the relationship between the coefficients is:

There is no such constraints on other coefficients. So, we can choose any value for the remaining coefficients B, C, D, F, G and H.
<h2>Answer: decibels
</h2>
The decibel
is the relation between two values: the pressure produced by a sound wave and a pressure taken as a reference. Resulting in a dimensionless value.
It should be noted that itself<u> is not a unit of measure</u>, since in reality the unit is bel
(which <u>is not part of the International System of Units</u>) in honor of Alexander Graham Bell.
However, given the amplitude of the measured elements in practice, its submultiple, the decibel, is used. That is, this quotient is a logarithmic expression, where
Answer:
period of oscillations is 0.695 second
Explanation:
given data
mass m = 0.350 kg
spring stretches x = 12 cm = 0.12 m
to find out
period of oscillations
solution
we know here that force
force = k × x .........1
so force = mg = 0.35 (9.8) = 3.43 N
3.43 = k × 0.12
k = 28.58 N/m
so period of oscillations is
period of oscillations = 2π ×
................2
put here value
period of oscillations = 2π ×
period of oscillations = 0.6953
so period of oscillations is 0.695 second