1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elis [28]
2 years ago
6

When a p-n-p transistor is operated in saturation region, then its ___________​

Physics
1 answer:
Likurg_2 [28]2 years ago
8 0

Answer:

Base-emitter and Base-collector junctions are forward biased

You might be interested in
The rate constants for the reactions of atomic chlorine and of hydroxyl radical with ozone are given by 3 × 10-11 e-250/T and 2
Vlada [557]

Answer:

Calculate the ratio of the rates of ozone destruction by these catalysts at 20 km, given that at this altitude the average concentration of OH is about 100 times that of Cl and that the temperature is about -50 °C

Knowing

Rate constants for the reactions of atomic chlorine and of hydroxyl radical with ozone are given by 3x10^{-11} e^{-255/T}  and 2x10^{-12} e^{-940/T}  

T = -50 °C = 223 K

The reaction rate will be given by [Cl] [O3] 3x10^{-11} e^{-255/223} = 9.78^{-12} [Cl] [O3]  

Than, the reaction rate of OH with O3 is

Rate = [OH] [O3] 2x10^{-12} e^{-940/223} = 2.95^{-14} [OH] [O3]

Considering these 2 rates we can realize the ratio of the reaction with Cl to the reaction with OH is 330 * [Cl] / [OH]

Than, the concentration of OH is approximately 100 times of Cl, and the result will be that the reaction with Cl is 3.3 times faster than the  reaction with OH

Calculate the rate constant for ozone destruction by chlorine under conditions in the Antarctic ozone hole, when the temperature is about -80 °C and the concentration of atomic chlorine increases by a factor of one hundred to about 4 × 105 molecules cm-3

Knowing

Rate constants for the reactions of atomic chlorine and of hydroxyl radical with ozone are given by 3x10^{-11} e^{-255/T}  and 2x10^{-12} e^{-940/T}  

T = -80 °C = 193 K

The reaction rate will be given by [Cl] [O3] 3x10^{-11} e^{-255/193} = 8.21^{-12} [Cl] [O3]  

Than, the reaction rate of OH with O3 is

Rate = [OH] [O3] 2x10^{-12} e^{-940/193} = 1.53^{-14} [OH] [O3]

Considering these 2 rates we can realize the ratio of the reaction with Cl to the reaction with OH is 535 * [Cl] / [OH]

Than, considering the concentration of Cl increases by a factor of 100 to about 4 × 10^{5} molecules cm^{-3}, the result will be that the reaction with OH will be 535 + (100 to about 4 × 10^{5} molecules cm^{-3}) times faster than the  reaction with Cl

Explanation:

4 0
2 years ago
Ethan made a diagram to compare examples of the first and second laws of thermodynamics. What belongs in the areas marked X and
bazaltina [42]

Answer:

The answer is X: Thermal energy is converted to light energy

Y: A cold spoon placed in hot liquid gets warmer

Explanation:

I took the quiz

4 0
3 years ago
Hurricane Katrina and hurricane Rita are similar in what way? (I will give brainliest to the correct answer) :)
RoseWind [281]

Answer:

Rita and Katrina both followed similar paths into the Gulf.

Explanation:

4 0
2 years ago
Read 2 more answers
An oscilloscope shows a steady sinusoidal signal of 5 Volt peak to peak, which spans 5 cm in vertical direction on the screen. B
Troyanec [42]

Answer:

it will show a continuous rise in value. The rise will be sinusoidal.

Explanation:

3 0
3 years ago
Show all work.
lys-0071 [83]

The new gravitation force at the new location is 40 N

Explanation:

The weight of the astronaut is given by the equation

F=mg (1)

where

m is the mass of the astronaut

g is the acceleration of gravity

The acceleration of gravity at a certain distance r from the centre of the Earth is given by

g=\frac{GM}{r^2}

where G is the gravitational constant and M is the Earth's mass. So we can rewrite eq.(1) as

F=\frac{GMm}{r^2}

When the astronaut is on the Earth's surface, r=R (where R is the Earth's radius), so his weight is

F=\frac{GMm}{R^2}=640 N

Later, he moves to another location where his distance from the Earth's surface is 3 times the previous distance, so the new distance from the Earth's centre is

r'=3R+R=4R

Therefore, the new weight is

F'=\frac{GMm}{(4R)^2}=\frac{1}{16}\frac{GMm}{R^2}=\frac{F}{16}

Which means that his weight has decreased by a factor 16: therefore, the new weight is

F'=\frac{640}{16}=40 N

Learn more about gravitational force:

brainly.com/question/1724648

brainly.com/question/12785992

#LearnwithBrainly

3 0
3 years ago
Other questions:
  • Sandra is having difficulty with her reading assignment because she does not fully understand the language. Which online tool wo
    11·2 answers
  • An object in circular motion has velocity that is constantly changing. The direction of the acceleration is
    9·1 answer
  • When the Voyager I and Voyager II spacecraft were exploring the outer planets, NASA flight controllers had to plan the crafts' m
    13·1 answer
  • Determine the total moment of inertia of a merry-go round with 5 children sitting on it. Of the five children, four are seated a
    6·1 answer
  • What happened the year that isaac newton was born
    10·2 answers
  • What is the science?​
    15·2 answers
  • A spring-loaded toy gun is used to shoot a ball of mass straight up in the air, as shown in the figure. The spring has spring co
    12·1 answer
  • A kid on a playground swing makes a complete to-and-fro swing each 2 seconds.
    5·1 answer
  • Holaaaaa........................
    14·1 answer
  • What are 5 examples of expansion and contraction? What are their benefits?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!